通过对抗式机器学习进行多源稳定变量重要性测量

Zitao Wang, Nian Si, Zijian Guo, Molei Liu
{"title":"通过对抗式机器学习进行多源稳定变量重要性测量","authors":"Zitao Wang, Nian Si, Zijian Guo, Molei Liu","doi":"arxiv-2409.07380","DOIUrl":null,"url":null,"abstract":"As part of enhancing the interpretability of machine learning, it is of\nrenewed interest to quantify and infer the predictive importance of certain\nexposure covariates. Modern scientific studies often collect data from multiple\nsources with distributional heterogeneity. Thus, measuring and inferring stable\nassociations across multiple environments is crucial in reliable and\ngeneralizable decision-making. In this paper, we propose MIMAL, a novel\nstatistical framework for Multi-source stable Importance Measure via\nAdversarial Learning. MIMAL measures the importance of some exposure variables\nby maximizing the worst-case predictive reward over the source mixture. Our\nframework allows various machine learning methods for confounding adjustment\nand exposure effect characterization. For inferential analysis, the asymptotic\nnormality of our introduced statistic is established under a general machine\nlearning framework that requires no stronger learning accuracy conditions than\nthose for single source variable importance. Numerical studies with various\ntypes of data generation setups and machine learning implementation are\nconducted to justify the finite-sample performance of MIMAL. We also illustrate\nour method through a real-world study of Beijing air pollution in multiple\nlocations.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-source Stable Variable Importance Measure via Adversarial Machine Learning\",\"authors\":\"Zitao Wang, Nian Si, Zijian Guo, Molei Liu\",\"doi\":\"arxiv-2409.07380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As part of enhancing the interpretability of machine learning, it is of\\nrenewed interest to quantify and infer the predictive importance of certain\\nexposure covariates. Modern scientific studies often collect data from multiple\\nsources with distributional heterogeneity. Thus, measuring and inferring stable\\nassociations across multiple environments is crucial in reliable and\\ngeneralizable decision-making. In this paper, we propose MIMAL, a novel\\nstatistical framework for Multi-source stable Importance Measure via\\nAdversarial Learning. MIMAL measures the importance of some exposure variables\\nby maximizing the worst-case predictive reward over the source mixture. Our\\nframework allows various machine learning methods for confounding adjustment\\nand exposure effect characterization. For inferential analysis, the asymptotic\\nnormality of our introduced statistic is established under a general machine\\nlearning framework that requires no stronger learning accuracy conditions than\\nthose for single source variable importance. Numerical studies with various\\ntypes of data generation setups and machine learning implementation are\\nconducted to justify the finite-sample performance of MIMAL. We also illustrate\\nour method through a real-world study of Beijing air pollution in multiple\\nlocations.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为提高机器学习可解释性的一部分,量化和推断某些暴露协变量的预测重要性日益受到关注。现代科学研究通常从具有分布异质性的多个来源收集数据。因此,测量和推断多个环境中的稳定关联对于可靠和可推广的决策至关重要。在本文中,我们提出了一个新颖的统计框架 MIMAL,即通过对抗学习进行多源稳定重要性测量。MIMAL 通过最大化源混合物的最坏情况预测奖励来衡量某些暴露变量的重要性。我们的框架允许使用各种机器学习方法进行混杂调整和暴露效应表征。在推理分析中,我们引入的统计量的渐近正态性是在一般机器学习框架下建立的,它所要求的学习准确性条件并不比单一来源变量重要性的条件强。我们对不同类型的数据生成设置和机器学习实现进行了数值研究,以证明 MIMAL 的有限样本性能。我们还通过对北京多地点空气污染的实际研究来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-source Stable Variable Importance Measure via Adversarial Machine Learning
As part of enhancing the interpretability of machine learning, it is of renewed interest to quantify and infer the predictive importance of certain exposure covariates. Modern scientific studies often collect data from multiple sources with distributional heterogeneity. Thus, measuring and inferring stable associations across multiple environments is crucial in reliable and generalizable decision-making. In this paper, we propose MIMAL, a novel statistical framework for Multi-source stable Importance Measure via Adversarial Learning. MIMAL measures the importance of some exposure variables by maximizing the worst-case predictive reward over the source mixture. Our framework allows various machine learning methods for confounding adjustment and exposure effect characterization. For inferential analysis, the asymptotic normality of our introduced statistic is established under a general machine learning framework that requires no stronger learning accuracy conditions than those for single source variable importance. Numerical studies with various types of data generation setups and machine learning implementation are conducted to justify the finite-sample performance of MIMAL. We also illustrate our method through a real-world study of Beijing air pollution in multiple locations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信