Bhargav T. Nallapu, Kellen K. Petersen, Tianchen Qian, Idris Demirsoy, Elham Ghanbarian, Christos Davatzikos, Richard B. Lipton, Ali Ezzati, Alzheimer’s Disease Neuroimaging Initiative
{"title":"预测阿尔茨海默病临床试验中认知能力下降的机器学习方法","authors":"Bhargav T. Nallapu, Kellen K. Petersen, Tianchen Qian, Idris Demirsoy, Elham Ghanbarian, Christos Davatzikos, Richard B. Lipton, Ali Ezzati, Alzheimer’s Disease Neuroimaging Initiative","doi":"10.1101/2024.09.03.24312481","DOIUrl":null,"url":null,"abstract":"<strong>Background</strong> Of persons randomized to the placebo arm of Alzheimer’s Disease (AD) treatment trials, 40% do not show cognitive decline over 80 weeks of follow-up. Identifying and excluding these individuals from both arms of randomized clinical trials (RCTs) of AD has the potential to increase power to detect treatment effects.","PeriodicalId":501367,"journal":{"name":"medRxiv - Neurology","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning Approach to Predict Cognitive Decline in Alzheimer’s Disease Clinical Trials\",\"authors\":\"Bhargav T. Nallapu, Kellen K. Petersen, Tianchen Qian, Idris Demirsoy, Elham Ghanbarian, Christos Davatzikos, Richard B. Lipton, Ali Ezzati, Alzheimer’s Disease Neuroimaging Initiative\",\"doi\":\"10.1101/2024.09.03.24312481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Background</strong> Of persons randomized to the placebo arm of Alzheimer’s Disease (AD) treatment trials, 40% do not show cognitive decline over 80 weeks of follow-up. Identifying and excluding these individuals from both arms of randomized clinical trials (RCTs) of AD has the potential to increase power to detect treatment effects.\",\"PeriodicalId\":501367,\"journal\":{\"name\":\"medRxiv - Neurology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Neurology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.03.24312481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.03.24312481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Machine Learning Approach to Predict Cognitive Decline in Alzheimer’s Disease Clinical Trials
Background Of persons randomized to the placebo arm of Alzheimer’s Disease (AD) treatment trials, 40% do not show cognitive decline over 80 weeks of follow-up. Identifying and excluding these individuals from both arms of randomized clinical trials (RCTs) of AD has the potential to increase power to detect treatment effects.