在提取 IBD 患者报告结果方面,大型语言模型优于传统自然语言处理方法

Perseus V. Patel, Conner Davis, Amariel Ralbovsky, Daniel Tinoco, Christopher Y.K. Williams, Shadera Slatter, Behzad Naderalvojoud, Michael J. Rosen, Tina Hernandez-Boussard, Vivek Rudrapatna
{"title":"在提取 IBD 患者报告结果方面,大型语言模型优于传统自然语言处理方法","authors":"Perseus V. Patel, Conner Davis, Amariel Ralbovsky, Daniel Tinoco, Christopher Y.K. Williams, Shadera Slatter, Behzad Naderalvojoud, Michael J. Rosen, Tina Hernandez-Boussard, Vivek Rudrapatna","doi":"10.1101/2024.09.05.24313139","DOIUrl":null,"url":null,"abstract":"<strong>Background and Aims</strong> Patient-reported outcomes (PROs) are vital in assessing disease activity and treatment outcomes in inflammatory bowel disease (IBD). However, manual extraction of these PROs from the free-text of clinical notes is burdensome. We aimed to improve data curation from free-text information in the electronic health record, making it more available for research and quality improvement. This study aimed to compare traditional natural language processing (tNLP) and large language models (LLMs) in extracting three IBD PROs (abdominal pain, diarrhea, fecal blood) from clinical notes across two institutions.","PeriodicalId":501258,"journal":{"name":"medRxiv - Gastroenterology","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large language models outperform traditional natural language processing methods in extracting patient-reported outcomes in IBD\",\"authors\":\"Perseus V. Patel, Conner Davis, Amariel Ralbovsky, Daniel Tinoco, Christopher Y.K. Williams, Shadera Slatter, Behzad Naderalvojoud, Michael J. Rosen, Tina Hernandez-Boussard, Vivek Rudrapatna\",\"doi\":\"10.1101/2024.09.05.24313139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Background and Aims</strong> Patient-reported outcomes (PROs) are vital in assessing disease activity and treatment outcomes in inflammatory bowel disease (IBD). However, manual extraction of these PROs from the free-text of clinical notes is burdensome. We aimed to improve data curation from free-text information in the electronic health record, making it more available for research and quality improvement. This study aimed to compare traditional natural language processing (tNLP) and large language models (LLMs) in extracting three IBD PROs (abdominal pain, diarrhea, fecal blood) from clinical notes across two institutions.\",\"PeriodicalId\":501258,\"journal\":{\"name\":\"medRxiv - Gastroenterology\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Gastroenterology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.05.24313139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Gastroenterology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.05.24313139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的 患者报告结果(PROs)对于评估炎症性肠病(IBD)的疾病活动性和治疗效果至关重要。然而,从临床笔记的自由文本中手动提取这些患者报告结果非常繁琐。我们的目标是从电子健康记录的自由文本信息中改进数据整理,使其更有利于研究和质量改进。本研究旨在比较传统自然语言处理(tNLP)和大型语言模型(LLM)在从两家机构的临床笔记中提取三种 IBD PROs(腹痛、腹泻、粪便带血)时的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large language models outperform traditional natural language processing methods in extracting patient-reported outcomes in IBD
Background and Aims Patient-reported outcomes (PROs) are vital in assessing disease activity and treatment outcomes in inflammatory bowel disease (IBD). However, manual extraction of these PROs from the free-text of clinical notes is burdensome. We aimed to improve data curation from free-text information in the electronic health record, making it more available for research and quality improvement. This study aimed to compare traditional natural language processing (tNLP) and large language models (LLMs) in extracting three IBD PROs (abdominal pain, diarrhea, fecal blood) from clinical notes across two institutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信