一类投影平面芬斯勒度量

IF 1.1 3区 数学 Q1 MATHEMATICS
Huaifu Liu, Xiaohuan Mo, Ling Zhu
{"title":"一类投影平面芬斯勒度量","authors":"Huaifu Liu, Xiaohuan Mo, Ling Zhu","doi":"10.1007/s00025-024-02252-x","DOIUrl":null,"url":null,"abstract":"<p>Projectively flat Finlser metrics on a convex domain <i>U</i> in <span>\\(\\mathbb {R}^n\\)</span> are regular solutions to Hilbert’s Fourth Problem. In this paper, we study projectively flat Finlser metrics on <i>U</i>. We find equations that characterize these metrics with weakly orthogonal invariance, refining a theorem due to Sol<span>\\(\\acute{o}\\)</span>rzano-Le<span>\\(\\acute{o}\\)</span>n. As its application, we obtain infinitely many <i>new</i> projectively flat Finlser metrics on <span>\\(\\mathbb {S}^{n+1}\\)</span> and determine their scalar flag curvature. These metrics contain Bryant’s projective spherically symmetric Finsler metric of constant flag curvature 1.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Class of Projectively Flat Finsler Metrics\",\"authors\":\"Huaifu Liu, Xiaohuan Mo, Ling Zhu\",\"doi\":\"10.1007/s00025-024-02252-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Projectively flat Finlser metrics on a convex domain <i>U</i> in <span>\\\\(\\\\mathbb {R}^n\\\\)</span> are regular solutions to Hilbert’s Fourth Problem. In this paper, we study projectively flat Finlser metrics on <i>U</i>. We find equations that characterize these metrics with weakly orthogonal invariance, refining a theorem due to Sol<span>\\\\(\\\\acute{o}\\\\)</span>rzano-Le<span>\\\\(\\\\acute{o}\\\\)</span>n. As its application, we obtain infinitely many <i>new</i> projectively flat Finlser metrics on <span>\\\\(\\\\mathbb {S}^{n+1}\\\\)</span> and determine their scalar flag curvature. These metrics contain Bryant’s projective spherically symmetric Finsler metric of constant flag curvature 1.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02252-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02252-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在 \(\mathbb {R}^n\) 中凸域 U 上的投影平 Finlser 度量是希尔伯特第四问题的正则解。在本文中,我们研究了 U 上的投影平直芬塞尔度量。我们发现了这些度量具有弱正交不变性的方程,完善了 Sol\(\acute{o}\)rzanoo-Le\(\acute{o}\)n 的定理。作为它的应用,我们在\(\mathbb {S}^{n+1}\) 上得到了无穷多个新的投影平坦芬塞尔度量,并确定了它们的标量旗曲率。这些度量包含了布赖恩特的恒旗曲率为 1 的投影球面对称芬斯勒度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Class of Projectively Flat Finsler Metrics

Projectively flat Finlser metrics on a convex domain U in \(\mathbb {R}^n\) are regular solutions to Hilbert’s Fourth Problem. In this paper, we study projectively flat Finlser metrics on U. We find equations that characterize these metrics with weakly orthogonal invariance, refining a theorem due to Sol\(\acute{o}\)rzano-Le\(\acute{o}\)n. As its application, we obtain infinitely many new projectively flat Finlser metrics on \(\mathbb {S}^{n+1}\) and determine their scalar flag curvature. These metrics contain Bryant’s projective spherically symmetric Finsler metric of constant flag curvature 1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信