{"title":"一类投影平面芬斯勒度量","authors":"Huaifu Liu, Xiaohuan Mo, Ling Zhu","doi":"10.1007/s00025-024-02252-x","DOIUrl":null,"url":null,"abstract":"<p>Projectively flat Finlser metrics on a convex domain <i>U</i> in <span>\\(\\mathbb {R}^n\\)</span> are regular solutions to Hilbert’s Fourth Problem. In this paper, we study projectively flat Finlser metrics on <i>U</i>. We find equations that characterize these metrics with weakly orthogonal invariance, refining a theorem due to Sol<span>\\(\\acute{o}\\)</span>rzano-Le<span>\\(\\acute{o}\\)</span>n. As its application, we obtain infinitely many <i>new</i> projectively flat Finlser metrics on <span>\\(\\mathbb {S}^{n+1}\\)</span> and determine their scalar flag curvature. These metrics contain Bryant’s projective spherically symmetric Finsler metric of constant flag curvature 1.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Class of Projectively Flat Finsler Metrics\",\"authors\":\"Huaifu Liu, Xiaohuan Mo, Ling Zhu\",\"doi\":\"10.1007/s00025-024-02252-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Projectively flat Finlser metrics on a convex domain <i>U</i> in <span>\\\\(\\\\mathbb {R}^n\\\\)</span> are regular solutions to Hilbert’s Fourth Problem. In this paper, we study projectively flat Finlser metrics on <i>U</i>. We find equations that characterize these metrics with weakly orthogonal invariance, refining a theorem due to Sol<span>\\\\(\\\\acute{o}\\\\)</span>rzano-Le<span>\\\\(\\\\acute{o}\\\\)</span>n. As its application, we obtain infinitely many <i>new</i> projectively flat Finlser metrics on <span>\\\\(\\\\mathbb {S}^{n+1}\\\\)</span> and determine their scalar flag curvature. These metrics contain Bryant’s projective spherically symmetric Finsler metric of constant flag curvature 1.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02252-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02252-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在 \(\mathbb {R}^n\) 中凸域 U 上的投影平 Finlser 度量是希尔伯特第四问题的正则解。在本文中,我们研究了 U 上的投影平直芬塞尔度量。我们发现了这些度量具有弱正交不变性的方程,完善了 Sol\(\acute{o}\)rzanoo-Le\(\acute{o}\)n 的定理。作为它的应用,我们在\(\mathbb {S}^{n+1}\) 上得到了无穷多个新的投影平坦芬塞尔度量,并确定了它们的标量旗曲率。这些度量包含了布赖恩特的恒旗曲率为 1 的投影球面对称芬斯勒度量。
Projectively flat Finlser metrics on a convex domain U in \(\mathbb {R}^n\) are regular solutions to Hilbert’s Fourth Problem. In this paper, we study projectively flat Finlser metrics on U. We find equations that characterize these metrics with weakly orthogonal invariance, refining a theorem due to Sol\(\acute{o}\)rzano-Le\(\acute{o}\)n. As its application, we obtain infinitely many new projectively flat Finlser metrics on \(\mathbb {S}^{n+1}\) and determine their scalar flag curvature. These metrics contain Bryant’s projective spherically symmetric Finsler metric of constant flag curvature 1.
期刊介绍:
Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.