证明鲁比奥-德-弗朗西亚猜想的利特尔伍德-佩利式不等式中的 $$A_{1}\left( {\mathbb {R}\right) $$ -加权 $$L^{2}\left( {\mathbb {R}\right) $$ 对于每个偶数 $$A_{1}\left( {\mathbb {R}\right) $$ 加权都是有效的

Earl Berkson
{"title":"证明鲁比奥-德-弗朗西亚猜想的利特尔伍德-佩利式不等式中的 $$A_{1}\\left( {\\mathbb {R}\\right) $$ -加权 $$L^{2}\\left( {\\mathbb {R}\\right) $$ 对于每个偶数 $$A_{1}\\left( {\\mathbb {R}\\right) $$ 加权都是有效的","authors":"Earl Berkson","doi":"10.1007/s12220-024-01762-y","DOIUrl":null,"url":null,"abstract":"<p>It is demonstrated that a form of Rubio de Francia’s hitherto unresolved Littlewood-Paley Type Conjecture from the year 1985 is valid for the weighted-<span>\\(L^{2}\\left( {\\mathbb {R}}\\right) \\)</span> space corresponding to any even <span>\\(A_{1}\\left( {\\mathbb {R}}\\right) \\)</span> weight. Otherwise expressed, we show that if <span>\\(\\omega \\)</span> is any even <span>\\(A_{1}\\left( {\\mathbb {R}}\\right) \\)</span> weight, <i>C</i> is an <span>\\(A_{1}\\left( {\\mathbb {R}}\\right) \\)</span> weight constant for <span>\\(\\omega \\)</span>, <span>\\(\\ f\\in \\)</span> <span>\\(L^{2}\\left( {\\mathbb {R}},\\omega \\left( t\\right) dt\\right) \\)</span>, and <span>\\(\\left\\{ J_{k}\\right\\} _{k\\ge 1}\\)</span> is any finite or infinite sequence of disjoint intervals of <span>\\({\\mathbb {R}}\\)</span>, then the following estimate holds for the corresponding Littlewood-Paley Type square function defined by <span>\\(\\left\\{ S_{J_{k}}\\left( f\\right) \\right\\} _{k\\ge 1}\\)</span>(where the symbol <span>\\(S_{_{J_{k}} }\\)</span> denotes the indicated partial sum projection for the context of <span>\\({\\mathbb {R}}\\)</span>): </p><span>$$\\begin{aligned} \\left\\| \\left\\{ \\sum \\limits _{k\\ge 1}\\left| S_{J_{k}}\\left( f\\right) \\right| ^{2}\\right\\} ^{1/2}\\right\\| _{L^{2}\\left( {\\mathbb {R}},\\omega \\left( t\\right) dt\\right) }\\le 2^{5}C^{1/2}\\left\\| f\\right\\| _{L^{2}\\left( {\\mathbb {R}},\\omega ^*\\left( t\\right) dt\\right) }, \\end{aligned}$$</span><p>where <span>\\(\\omega ^*\\)</span> is the decreasing rearrangement of <span>\\(\\omega \\)</span>. A corollary of this even <span>\\(A_{1}\\left( {\\mathbb {R}}\\right) \\)</span>-weighted theorem is obtained which provides a related variant thereof in the setting of any (not necessarily even) <span>\\(A_{1}\\left( {\\mathbb {R}}\\right) \\)</span> weight.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof that a Form of Rubio de Francia’s Conjectured Littlewood-Paley Type Inequality for $$A_{1}\\\\left( {\\\\mathbb {R}}\\\\right) $$ -Weighted $$L^{2}\\\\left( {\\\\mathbb {R}}\\\\right) $$ is Valid for Every Even $$A_{1}\\\\left( {\\\\mathbb {R}}\\\\right) $$ Weight\",\"authors\":\"Earl Berkson\",\"doi\":\"10.1007/s12220-024-01762-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is demonstrated that a form of Rubio de Francia’s hitherto unresolved Littlewood-Paley Type Conjecture from the year 1985 is valid for the weighted-<span>\\\\(L^{2}\\\\left( {\\\\mathbb {R}}\\\\right) \\\\)</span> space corresponding to any even <span>\\\\(A_{1}\\\\left( {\\\\mathbb {R}}\\\\right) \\\\)</span> weight. Otherwise expressed, we show that if <span>\\\\(\\\\omega \\\\)</span> is any even <span>\\\\(A_{1}\\\\left( {\\\\mathbb {R}}\\\\right) \\\\)</span> weight, <i>C</i> is an <span>\\\\(A_{1}\\\\left( {\\\\mathbb {R}}\\\\right) \\\\)</span> weight constant for <span>\\\\(\\\\omega \\\\)</span>, <span>\\\\(\\\\ f\\\\in \\\\)</span> <span>\\\\(L^{2}\\\\left( {\\\\mathbb {R}},\\\\omega \\\\left( t\\\\right) dt\\\\right) \\\\)</span>, and <span>\\\\(\\\\left\\\\{ J_{k}\\\\right\\\\} _{k\\\\ge 1}\\\\)</span> is any finite or infinite sequence of disjoint intervals of <span>\\\\({\\\\mathbb {R}}\\\\)</span>, then the following estimate holds for the corresponding Littlewood-Paley Type square function defined by <span>\\\\(\\\\left\\\\{ S_{J_{k}}\\\\left( f\\\\right) \\\\right\\\\} _{k\\\\ge 1}\\\\)</span>(where the symbol <span>\\\\(S_{_{J_{k}} }\\\\)</span> denotes the indicated partial sum projection for the context of <span>\\\\({\\\\mathbb {R}}\\\\)</span>): </p><span>$$\\\\begin{aligned} \\\\left\\\\| \\\\left\\\\{ \\\\sum \\\\limits _{k\\\\ge 1}\\\\left| S_{J_{k}}\\\\left( f\\\\right) \\\\right| ^{2}\\\\right\\\\} ^{1/2}\\\\right\\\\| _{L^{2}\\\\left( {\\\\mathbb {R}},\\\\omega \\\\left( t\\\\right) dt\\\\right) }\\\\le 2^{5}C^{1/2}\\\\left\\\\| f\\\\right\\\\| _{L^{2}\\\\left( {\\\\mathbb {R}},\\\\omega ^*\\\\left( t\\\\right) dt\\\\right) }, \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\omega ^*\\\\)</span> is the decreasing rearrangement of <span>\\\\(\\\\omega \\\\)</span>. A corollary of this even <span>\\\\(A_{1}\\\\left( {\\\\mathbb {R}}\\\\right) \\\\)</span>-weighted theorem is obtained which provides a related variant thereof in the setting of any (not necessarily even) <span>\\\\(A_{1}\\\\left( {\\\\mathbb {R}}\\\\right) \\\\)</span> weight.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01762-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01762-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了鲁比奥-德-弗朗西亚(Rubio de Francia)在1985年提出的迄今尚未解决的利特尔伍德-佩利类型猜想的一种形式对于加权-(L^{2}\left( {\mathbb {R}}\right) \)空间是有效的,它对应于任何偶数的\(A_{1}\left( {\mathbb {R}}\right) \)权重。换句话说,我们证明如果 \(omega \) 是任何偶数 \(A_{1}\left( {\mathbb {R}\right) weight、C is an \(A_{1}\left( {\mathbb {R}\right) \) weight constant for \(\omega \), \(\f\in \) \(L^{2}\left( {\mathbb {R}},\omega \left( t\right) dt\right) \)、并且 \(\left\{ J_{k}\right} _{k\ge 1}\) 是 \({\mathbb {R}}\) 的任意有限或无限不相邻区间序列,那么下面的估计对于由 \(\left\{ S_{J_{k}}\left( f\right) \right\} 定义的相应 Littlewood-Paley 型平方函数成立其中符号 \(S_{{J_{k}} }\) 表示在 \({\mathbb {R}}\) 的上下文中的部分和投影):$$\begin{aligned}(开始{aligned})。\S_{J_{k}}left( f\right) \right| ^{2}\right\}^{1/2}\right| _{L^{2}\left( {\mathbb {R}},\omega \left( t\right) dt\right) }\le 2^{5}C^{1/2}\left\| f\right\| _{L^{2}\left( {\mathbb {R}}、\omega ^*\left( t\right) dt\right) }, \end{aligned}$$其中 \(\omega ^*\) 是 \(\omega \) 的递减重排。这个偶数\(A_{1}\left( {\mathbb {R}}\right) \)加权定理的一个推论是在任何(不一定是偶数)\(A_{1}\left( {\mathbb {R}}\right) \)加权的情况下提供一个相关的变式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof that a Form of Rubio de Francia’s Conjectured Littlewood-Paley Type Inequality for $$A_{1}\left( {\mathbb {R}}\right) $$ -Weighted $$L^{2}\left( {\mathbb {R}}\right) $$ is Valid for Every Even $$A_{1}\left( {\mathbb {R}}\right) $$ Weight

It is demonstrated that a form of Rubio de Francia’s hitherto unresolved Littlewood-Paley Type Conjecture from the year 1985 is valid for the weighted-\(L^{2}\left( {\mathbb {R}}\right) \) space corresponding to any even \(A_{1}\left( {\mathbb {R}}\right) \) weight. Otherwise expressed, we show that if \(\omega \) is any even \(A_{1}\left( {\mathbb {R}}\right) \) weight, C is an \(A_{1}\left( {\mathbb {R}}\right) \) weight constant for \(\omega \), \(\ f\in \) \(L^{2}\left( {\mathbb {R}},\omega \left( t\right) dt\right) \), and \(\left\{ J_{k}\right\} _{k\ge 1}\) is any finite or infinite sequence of disjoint intervals of \({\mathbb {R}}\), then the following estimate holds for the corresponding Littlewood-Paley Type square function defined by \(\left\{ S_{J_{k}}\left( f\right) \right\} _{k\ge 1}\)(where the symbol \(S_{_{J_{k}} }\) denotes the indicated partial sum projection for the context of \({\mathbb {R}}\)):

$$\begin{aligned} \left\| \left\{ \sum \limits _{k\ge 1}\left| S_{J_{k}}\left( f\right) \right| ^{2}\right\} ^{1/2}\right\| _{L^{2}\left( {\mathbb {R}},\omega \left( t\right) dt\right) }\le 2^{5}C^{1/2}\left\| f\right\| _{L^{2}\left( {\mathbb {R}},\omega ^*\left( t\right) dt\right) }, \end{aligned}$$

where \(\omega ^*\) is the decreasing rearrangement of \(\omega \). A corollary of this even \(A_{1}\left( {\mathbb {R}}\right) \)-weighted theorem is obtained which provides a related variant thereof in the setting of any (not necessarily even) \(A_{1}\left( {\mathbb {R}}\right) \) weight.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信