Martin Zalazar, Shriya Jitendra Kalburge, Yining Zhang, Ran Drori
{"title":"冷冻食品中冰成核与冰生长速度之间的反比关系","authors":"Martin Zalazar, Shriya Jitendra Kalburge, Yining Zhang, Ran Drori","doi":"10.1007/s11483-024-09881-3","DOIUrl":null,"url":null,"abstract":"<div><p>According to a USDA report, $161 billion worth of food products was not available for human consumption in 2010 due to food loss. One potential way to reduce food loss is to prevent damage to the food product during the freezing process. This study presents quantitative measurements of the two primary processes involved in freezing of foods: ice nucleation and ice growth. Using a newly developed micro-thermography system, we measured in-situ ice nucleation and growth rates. We found that ice nucleation rates in beef and zucchini were significantly higher than those in broccoli and potato, whereas ice growth was faster in broccoli and potato compared to beef and zucchini. Thus, ice nucleation and ice growth in the foods tested here, were found to be opposing processes. By analyzing the chemical composition of these foods, we applied established crystal growth and nucleation principles to explain the reasons causing the inverted relationship between ice nucleation and ice growth. Therefore, designing a customized freezing process for each food product will lead to improved quality of the product, thereby limiting food loss.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 4","pages":"1125 - 1133"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Relationship Between Ice Nucleation and Ice Growth Rates in Frozen Foods\",\"authors\":\"Martin Zalazar, Shriya Jitendra Kalburge, Yining Zhang, Ran Drori\",\"doi\":\"10.1007/s11483-024-09881-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>According to a USDA report, $161 billion worth of food products was not available for human consumption in 2010 due to food loss. One potential way to reduce food loss is to prevent damage to the food product during the freezing process. This study presents quantitative measurements of the two primary processes involved in freezing of foods: ice nucleation and ice growth. Using a newly developed micro-thermography system, we measured in-situ ice nucleation and growth rates. We found that ice nucleation rates in beef and zucchini were significantly higher than those in broccoli and potato, whereas ice growth was faster in broccoli and potato compared to beef and zucchini. Thus, ice nucleation and ice growth in the foods tested here, were found to be opposing processes. By analyzing the chemical composition of these foods, we applied established crystal growth and nucleation principles to explain the reasons causing the inverted relationship between ice nucleation and ice growth. Therefore, designing a customized freezing process for each food product will lead to improved quality of the product, thereby limiting food loss.</p></div>\",\"PeriodicalId\":564,\"journal\":{\"name\":\"Food Biophysics\",\"volume\":\"19 4\",\"pages\":\"1125 - 1133\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Biophysics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11483-024-09881-3\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-024-09881-3","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Inverse Relationship Between Ice Nucleation and Ice Growth Rates in Frozen Foods
According to a USDA report, $161 billion worth of food products was not available for human consumption in 2010 due to food loss. One potential way to reduce food loss is to prevent damage to the food product during the freezing process. This study presents quantitative measurements of the two primary processes involved in freezing of foods: ice nucleation and ice growth. Using a newly developed micro-thermography system, we measured in-situ ice nucleation and growth rates. We found that ice nucleation rates in beef and zucchini were significantly higher than those in broccoli and potato, whereas ice growth was faster in broccoli and potato compared to beef and zucchini. Thus, ice nucleation and ice growth in the foods tested here, were found to be opposing processes. By analyzing the chemical composition of these foods, we applied established crystal growth and nucleation principles to explain the reasons causing the inverted relationship between ice nucleation and ice growth. Therefore, designing a customized freezing process for each food product will lead to improved quality of the product, thereby limiting food loss.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.