SmileyLlama:为定向化学空间探索修改大型语言模型

Joseph M. Cavanagh, Kunyang Sun, Andrew Gritsevskiy, Dorian Bagni, Thomas D. Bannister, Teresa Head-Gordon
{"title":"SmileyLlama:为定向化学空间探索修改大型语言模型","authors":"Joseph M. Cavanagh, Kunyang Sun, Andrew Gritsevskiy, Dorian Bagni, Thomas D. Bannister, Teresa Head-Gordon","doi":"arxiv-2409.02231","DOIUrl":null,"url":null,"abstract":"Here we show that a Large Language Model (LLM) can serve as a foundation\nmodel for a Chemical Language Model (CLM) which performs at or above the level\nof CLMs trained solely on chemical SMILES string data. Using supervised\nfine-tuning (SFT) and direct preference optimization (DPO) on the open-source\nLlama LLM, we demonstrate that we can train an LLM to respond to prompts such\nas generating molecules with properties of interest to drug development. This\noverall framework allows an LLM to not just be a chatbot client for chemistry\nand materials tasks, but can be adapted to speak more directly as a CLM which\ncan generate molecules with user-specified properties.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SmileyLlama: Modifying Large Language Models for Directed Chemical Space Exploration\",\"authors\":\"Joseph M. Cavanagh, Kunyang Sun, Andrew Gritsevskiy, Dorian Bagni, Thomas D. Bannister, Teresa Head-Gordon\",\"doi\":\"arxiv-2409.02231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we show that a Large Language Model (LLM) can serve as a foundation\\nmodel for a Chemical Language Model (CLM) which performs at or above the level\\nof CLMs trained solely on chemical SMILES string data. Using supervised\\nfine-tuning (SFT) and direct preference optimization (DPO) on the open-source\\nLlama LLM, we demonstrate that we can train an LLM to respond to prompts such\\nas generating molecules with properties of interest to drug development. This\\noverall framework allows an LLM to not just be a chatbot client for chemistry\\nand materials tasks, but can be adapted to speak more directly as a CLM which\\ncan generate molecules with user-specified properties.\",\"PeriodicalId\":501304,\"journal\":{\"name\":\"arXiv - PHYS - Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们展示了大型语言模型(LLM)可以作为化学语言模型(CLM)的基础模型,其性能达到或超过仅根据化学SMILES字符串数据训练的CLM的水平。通过在开源 Llama LLM 上使用监督微调(SFT)和直接偏好优化(DPO),我们证明了可以训练 LLM 响应提示,例如生成具有药物开发所需的特性的分子。这一整体框架使 LLM 不仅仅成为化学和材料任务的聊天机器人客户端,还能更直接地作为 CLM 发言,生成具有用户指定特性的分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SmileyLlama: Modifying Large Language Models for Directed Chemical Space Exploration
Here we show that a Large Language Model (LLM) can serve as a foundation model for a Chemical Language Model (CLM) which performs at or above the level of CLMs trained solely on chemical SMILES string data. Using supervised fine-tuning (SFT) and direct preference optimization (DPO) on the open-source Llama LLM, we demonstrate that we can train an LLM to respond to prompts such as generating molecules with properties of interest to drug development. This overall framework allows an LLM to not just be a chatbot client for chemistry and materials tasks, but can be adapted to speak more directly as a CLM which can generate molecules with user-specified properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信