研究金刚石-石墨烯复合材料中电子迁移的扩展耗散运动方程方法

Yu Su, Yao Wang, Zi-Fan Zhu, Yuan Kong, Rui-Xue Xu, YiJing Yan, Xiao Zheng
{"title":"研究金刚石-石墨烯复合材料中电子迁移的扩展耗散运动方程方法","authors":"Yu Su, Yao Wang, Zi-Fan Zhu, Yuan Kong, Rui-Xue Xu, YiJing Yan, Xiao Zheng","doi":"arxiv-2409.00669","DOIUrl":null,"url":null,"abstract":"Graphene has garnered significant attention due to its unique properties.\nAmong its many intriguing characteristics, the tuning effects induced by\nadsorbed atoms (adatoms) provide immense potential for the design of\ngraphene-based electronic devices. This work explores the electronic migration\nin the adatom-graphene composite, using the extended\ndissipaton-equation-of-motion (DEOM) approach. As an exact dynamics theory for\nopen quantum systems embedded in environments composed of non-interacting\nelectrons, the extended DEOM is capable of handling both linear and quadratic\nenvironmental couplings (a certain non-Gaussian effect) which account for the\ninteractions between the adatom and the graphene substrate. We demonstrate and\nanalyze the adatom-graphene correlated properties and the tuning effects by\nsimulating the adatom spectral functions with varied Coulomb repulsion\nstrengths. This work offers not only advanced theoretical methods but also new\ninsights into the theoretical investigation of complex functional materials\nsuch as graphene-based electronic devices.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended dissipaton-equation-of-motion approach to study the electronic migration in adatom-graphene composite\",\"authors\":\"Yu Su, Yao Wang, Zi-Fan Zhu, Yuan Kong, Rui-Xue Xu, YiJing Yan, Xiao Zheng\",\"doi\":\"arxiv-2409.00669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene has garnered significant attention due to its unique properties.\\nAmong its many intriguing characteristics, the tuning effects induced by\\nadsorbed atoms (adatoms) provide immense potential for the design of\\ngraphene-based electronic devices. This work explores the electronic migration\\nin the adatom-graphene composite, using the extended\\ndissipaton-equation-of-motion (DEOM) approach. As an exact dynamics theory for\\nopen quantum systems embedded in environments composed of non-interacting\\nelectrons, the extended DEOM is capable of handling both linear and quadratic\\nenvironmental couplings (a certain non-Gaussian effect) which account for the\\ninteractions between the adatom and the graphene substrate. We demonstrate and\\nanalyze the adatom-graphene correlated properties and the tuning effects by\\nsimulating the adatom spectral functions with varied Coulomb repulsion\\nstrengths. This work offers not only advanced theoretical methods but also new\\ninsights into the theoretical investigation of complex functional materials\\nsuch as graphene-based electronic devices.\",\"PeriodicalId\":501304,\"journal\":{\"name\":\"arXiv - PHYS - Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在石墨烯众多引人入胜的特性中,吸附原子(adatoms)引起的调谐效应为设计基于石墨烯的电子器件提供了巨大的潜力。这项研究采用扩展的摩擦运动方程(DEOM)方法,探讨了金刚原子-石墨烯复合材料中的电子迁移。作为一种针对嵌入由非相互作用电子组成的环境中的开放量子系统的精确动力学理论,扩展的 DEOM 能够处理线性和二次环境耦合(某种非高斯效应),从而解释金刚原子与石墨烯基底之间的相互作用。我们通过模拟具有不同库仑斥力强度的金刚原子光谱函数,展示并分析了金刚原子与石墨烯的相关特性和调谐效应。这项工作不仅提供了先进的理论方法,还为石墨烯基电子器件等复杂功能材料的理论研究提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended dissipaton-equation-of-motion approach to study the electronic migration in adatom-graphene composite
Graphene has garnered significant attention due to its unique properties. Among its many intriguing characteristics, the tuning effects induced by adsorbed atoms (adatoms) provide immense potential for the design of graphene-based electronic devices. This work explores the electronic migration in the adatom-graphene composite, using the extended dissipaton-equation-of-motion (DEOM) approach. As an exact dynamics theory for open quantum systems embedded in environments composed of non-interacting electrons, the extended DEOM is capable of handling both linear and quadratic environmental couplings (a certain non-Gaussian effect) which account for the interactions between the adatom and the graphene substrate. We demonstrate and analyze the adatom-graphene correlated properties and the tuning effects by simulating the adatom spectral functions with varied Coulomb repulsion strengths. This work offers not only advanced theoretical methods but also new insights into the theoretical investigation of complex functional materials such as graphene-based electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信