同质辫在视觉上是质数

Peter Feller, Lukas Lewark, Miguel Orbegozo Rodriguez
{"title":"同质辫在视觉上是质数","authors":"Peter Feller, Lukas Lewark, Miguel Orbegozo Rodriguez","doi":"arxiv-2408.15730","DOIUrl":null,"url":null,"abstract":"We show that closures of homogeneous braids are visually prime, addressing a\nquestion of Cromwell. The key technical tool for the proof is the following\ncriterion concerning primeness of open books, which we consider to be of\nindependent interest. For open books of 3-manifolds the property of having no\nfixed essential arcs is preserved under essential Murasugi sums with a strictly\nright-veering open book, if the plumbing region of the original open book veers\nto the left. We also provide examples of open books in S^3 demonstrating that\nprimeness is not necessarily preserved under essential Murasugi sum, in fact\nnot even under stabilizations a.k.a. Hopf plumbings. Furthermore, we find that\ntrefoil plumbings need not preserve primeness. In contrast, we establish that\nfigure-eight knot plumbings do preserve primeness.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogeneous braids are visually prime\",\"authors\":\"Peter Feller, Lukas Lewark, Miguel Orbegozo Rodriguez\",\"doi\":\"arxiv-2408.15730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that closures of homogeneous braids are visually prime, addressing a\\nquestion of Cromwell. The key technical tool for the proof is the following\\ncriterion concerning primeness of open books, which we consider to be of\\nindependent interest. For open books of 3-manifolds the property of having no\\nfixed essential arcs is preserved under essential Murasugi sums with a strictly\\nright-veering open book, if the plumbing region of the original open book veers\\nto the left. We also provide examples of open books in S^3 demonstrating that\\nprimeness is not necessarily preserved under essential Murasugi sum, in fact\\nnot even under stabilizations a.k.a. Hopf plumbings. Furthermore, we find that\\ntrefoil plumbings need not preserve primeness. In contrast, we establish that\\nfigure-eight knot plumbings do preserve primeness.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了同质辫的闭包在视觉上是素数,从而解决了克伦威尔的一个问题。证明的关键技术工具是关于开卷的原始性的下列判据,我们认为它具有独立的意义。对于三芒星开卷,如果原始开卷的垂线区域向左偏离,那么在严格向右偏离的开卷的本质村杉和下,具有无固定本质弧的性质将得到保留。我们还提供了 S^3 中开卷的例子,证明在本质村杉和下,甚至在稳定化(又称霍普夫垂线)下,原始性并不一定得到保留。此外,我们还发现三叶垂线不一定能保留原始性。与此相反,我们发现图八节垂线确实保留了原始性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogeneous braids are visually prime
We show that closures of homogeneous braids are visually prime, addressing a question of Cromwell. The key technical tool for the proof is the following criterion concerning primeness of open books, which we consider to be of independent interest. For open books of 3-manifolds the property of having no fixed essential arcs is preserved under essential Murasugi sums with a strictly right-veering open book, if the plumbing region of the original open book veers to the left. We also provide examples of open books in S^3 demonstrating that primeness is not necessarily preserved under essential Murasugi sum, in fact not even under stabilizations a.k.a. Hopf plumbings. Furthermore, we find that trefoil plumbings need not preserve primeness. In contrast, we establish that figure-eight knot plumbings do preserve primeness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信