超重核裂变障碍的机器学习研究

IF 3.1 2区 物理与天体物理 Q1 Physics and Astronomy
Jiaxing Li, Hongfei Zhang
{"title":"超重核裂变障碍的机器学习研究","authors":"Jiaxing Li, Hongfei Zhang","doi":"10.1103/physrevc.110.034608","DOIUrl":null,"url":null,"abstract":"The synthesis of superheavy elements represents the forefront of exploring the properties of unknown nuclear matter. Theoretically, significant uncertainties in predicting the fission barriers of superheavy nuclei make accurate calculations of the survival probabilities of compound nuclei extremely challenging. This study utilizes a machine learning methodology to predict the fission barriers of nuclides with <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>93</mn><mo>&lt;</mo><mi>Z</mi><mo>≤</mo><mn>120</mn></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>135</mn><mo>&lt;</mo><mi>N</mi><mo>≤</mo><mn>184</mn></mrow></math>. We have estimated the fission barriers for a total of 660 nuclides, and leveraged these fission barriers to calculate the crucial survival probabilities in the synthesis of superheavy elements. Based on this, we calculated the reaction cross sections for the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mi>Ca</mi><mprescripts></mprescripts><none></none><mn>48</mn></mmultiscripts><mo>+</mo><mmultiscripts><mi>Am</mi><mprescripts></mprescripts><none></none><mn>243</mn></mmultiscripts></mrow></math> reaction within the framework of the dinuclear system model, and compared the results with experimental data measured using the new gas-filled separator DGFRS-2. The calculations successfully reproduced the experimental data within an acceptable range of error. Additionally, we explored the optimal synthesis conditions for synthesizing the new elements <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Z</mi><mo>=</mo><mn>119</mn></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Z</mi><mo>=</mo><mn>120</mn></mrow></math>, including projectile-target combinations, incident energies, and maximum reaction cross sections.","PeriodicalId":20122,"journal":{"name":"Physical Review C","volume":"310 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning study of fission barriers in superheavy nuclei\",\"authors\":\"Jiaxing Li, Hongfei Zhang\",\"doi\":\"10.1103/physrevc.110.034608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synthesis of superheavy elements represents the forefront of exploring the properties of unknown nuclear matter. Theoretically, significant uncertainties in predicting the fission barriers of superheavy nuclei make accurate calculations of the survival probabilities of compound nuclei extremely challenging. This study utilizes a machine learning methodology to predict the fission barriers of nuclides with <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>93</mn><mo>&lt;</mo><mi>Z</mi><mo>≤</mo><mn>120</mn></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>135</mn><mo>&lt;</mo><mi>N</mi><mo>≤</mo><mn>184</mn></mrow></math>. We have estimated the fission barriers for a total of 660 nuclides, and leveraged these fission barriers to calculate the crucial survival probabilities in the synthesis of superheavy elements. Based on this, we calculated the reaction cross sections for the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mmultiscripts><mi>Ca</mi><mprescripts></mprescripts><none></none><mn>48</mn></mmultiscripts><mo>+</mo><mmultiscripts><mi>Am</mi><mprescripts></mprescripts><none></none><mn>243</mn></mmultiscripts></mrow></math> reaction within the framework of the dinuclear system model, and compared the results with experimental data measured using the new gas-filled separator DGFRS-2. The calculations successfully reproduced the experimental data within an acceptable range of error. Additionally, we explored the optimal synthesis conditions for synthesizing the new elements <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Z</mi><mo>=</mo><mn>119</mn></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Z</mi><mo>=</mo><mn>120</mn></mrow></math>, including projectile-target combinations, incident energies, and maximum reaction cross sections.\",\"PeriodicalId\":20122,\"journal\":{\"name\":\"Physical Review C\",\"volume\":\"310 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review C\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevc.110.034608\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevc.110.034608","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

超重元素的合成是探索未知核物质特性的前沿领域。从理论上讲,在预测超重核的裂变势垒时存在很大的不确定性,这使得精确计算复合核的存活概率极具挑战性。本研究利用机器学习方法预测了93<Z≤120和135<N≤184的核素的裂变势垒。我们总共估算了 660 种核素的裂变势垒,并利用这些裂变势垒计算了超重元素合成过程中的关键存活概率。在此基础上,我们在二核系统模型框架内计算了 Ca48+Am243 反应的反应截面,并将计算结果与使用新型充气分离器 DGFRS-2 测得的实验数据进行了比较。计算结果在可接受的误差范围内成功地再现了实验数据。此外,我们还探索了合成新元素 Z=119 和 Z=120 的最佳合成条件,包括射弹-目标组合、入射能量和最大反应截面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning study of fission barriers in superheavy nuclei

Machine learning study of fission barriers in superheavy nuclei
The synthesis of superheavy elements represents the forefront of exploring the properties of unknown nuclear matter. Theoretically, significant uncertainties in predicting the fission barriers of superheavy nuclei make accurate calculations of the survival probabilities of compound nuclei extremely challenging. This study utilizes a machine learning methodology to predict the fission barriers of nuclides with 93<Z120 and 135<N184. We have estimated the fission barriers for a total of 660 nuclides, and leveraged these fission barriers to calculate the crucial survival probabilities in the synthesis of superheavy elements. Based on this, we calculated the reaction cross sections for the Ca48+Am243 reaction within the framework of the dinuclear system model, and compared the results with experimental data measured using the new gas-filled separator DGFRS-2. The calculations successfully reproduced the experimental data within an acceptable range of error. Additionally, we explored the optimal synthesis conditions for synthesizing the new elements Z=119 and Z=120, including projectile-target combinations, incident energies, and maximum reaction cross sections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review C
Physical Review C 物理-物理:核物理
CiteScore
5.70
自引率
35.50%
发文量
0
审稿时长
1-2 weeks
期刊介绍: Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field. PRC covers experimental and theoretical results in all aspects of nuclear physics, including: Nucleon-nucleon interaction, few-body systems Nuclear structure Nuclear reactions Relativistic nuclear collisions Hadronic physics and QCD Electroweak interaction, symmetries Nuclear astrophysics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信