概率超过 1/4 的 ARX 映射的加法差分

IF 0.58 Q3 Engineering
A. S. Mokrousov, N. A. Kolomeec
{"title":"概率超过 1/4 的 ARX 映射的加法差分","authors":"A. S. Mokrousov,&nbsp;N. A. Kolomeec","doi":"10.1134/S199047892402011X","DOIUrl":null,"url":null,"abstract":"<p> We consider the additive differential probabilities of functions\n<span>\\( x \\oplus y \\)</span> and\n<span>\\( (x \\oplus y) \\lll r \\)</span>, where\n<span>\\( x, y \\in \\mathbb {Z}_2^n \\)</span> and\n<span>\\( 1 \\leq r &lt; n \\)</span>. The probabilities are used for the differential cryptanalysis of ARX ciphers\nthat operate only with addition modulo\n<span>\\( 2^n \\)</span>, bitwise XOR (\n<span>\\( \\oplus \\)</span>), and bit rotations (\n<span>\\( \\lll r \\)</span>). A complete characterization of differentials whose probability exceeds\n<span>\\( 1/4 \\)</span> is obtained. All possible values of their probabilities are\n<span>\\( 1/3 + 4^{2 - i} / 6 \\)</span> for\n<span>\\( i \\in \\{1, \\dots , n\\} \\)</span>. We describe differentials with each of these probabilities and calculate the\nnumber of these values. We also calculate the number of all considered differentials. It is\n<span>\\( 48n - 68 \\)</span> for\n<span>\\( x \\oplus y \\)</span> and\n<span>\\( 24n - 30 \\)</span> for\n<span>\\( (x \\oplus y) \\lll r \\)</span>, where\n<span>\\( n \\geq 2 \\)</span>. We compare differentials of both mappings under the given constraint.\n</p>","PeriodicalId":607,"journal":{"name":"Journal of Applied and Industrial Mathematics","volume":"18 2","pages":"294 - 311"},"PeriodicalIF":0.5800,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additive Differentials for ARX Mappings with Probability\\nExceeding 1/4\",\"authors\":\"A. S. Mokrousov,&nbsp;N. A. Kolomeec\",\"doi\":\"10.1134/S199047892402011X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We consider the additive differential probabilities of functions\\n<span>\\\\( x \\\\oplus y \\\\)</span> and\\n<span>\\\\( (x \\\\oplus y) \\\\lll r \\\\)</span>, where\\n<span>\\\\( x, y \\\\in \\\\mathbb {Z}_2^n \\\\)</span> and\\n<span>\\\\( 1 \\\\leq r &lt; n \\\\)</span>. The probabilities are used for the differential cryptanalysis of ARX ciphers\\nthat operate only with addition modulo\\n<span>\\\\( 2^n \\\\)</span>, bitwise XOR (\\n<span>\\\\( \\\\oplus \\\\)</span>), and bit rotations (\\n<span>\\\\( \\\\lll r \\\\)</span>). A complete characterization of differentials whose probability exceeds\\n<span>\\\\( 1/4 \\\\)</span> is obtained. All possible values of their probabilities are\\n<span>\\\\( 1/3 + 4^{2 - i} / 6 \\\\)</span> for\\n<span>\\\\( i \\\\in \\\\{1, \\\\dots , n\\\\} \\\\)</span>. We describe differentials with each of these probabilities and calculate the\\nnumber of these values. We also calculate the number of all considered differentials. It is\\n<span>\\\\( 48n - 68 \\\\)</span> for\\n<span>\\\\( x \\\\oplus y \\\\)</span> and\\n<span>\\\\( 24n - 30 \\\\)</span> for\\n<span>\\\\( (x \\\\oplus y) \\\\lll r \\\\)</span>, where\\n<span>\\\\( n \\\\geq 2 \\\\)</span>. We compare differentials of both mappings under the given constraint.\\n</p>\",\"PeriodicalId\":607,\"journal\":{\"name\":\"Journal of Applied and Industrial Mathematics\",\"volume\":\"18 2\",\"pages\":\"294 - 311\"},\"PeriodicalIF\":0.5800,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S199047892402011X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S199047892402011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

Abstract We consider the additive differential probabilities of functions\( x oplus y \) and\( (x \oplus y) \lll r \), where\( x, y \in \mathbb {Z}_2^n \) and\( 1 \leq r < n \)。这些概率用于ARX密码的差分密码分析,ARX密码只进行加法运算( modulo\( 2^n \))、比特XOR( ( ( ( \oplus \)))和比特旋转( ( ( ( \lll r \)))。我们得到了概率超过( 1/4)的差分的完整特征。对于(i in \{1, \dots, n\} \)来说,它们概率的所有可能值是( 1/3 + 4^{2 - i} / 6 \)。我们用这些概率来描述差分,并计算这些值的数量。我们还计算了所有考虑过的差分的数量。它是( 48n - 68 ) for ( x \oplus y \)和( 24n - 30 ) for ( ( x \oplus y ) \lll r \),其中( n \geq 2 \)。我们比较这两个映射在给定约束条件下的差分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Additive Differentials for ARX Mappings with Probability Exceeding 1/4

We consider the additive differential probabilities of functions \( x \oplus y \) and \( (x \oplus y) \lll r \), where \( x, y \in \mathbb {Z}_2^n \) and \( 1 \leq r < n \). The probabilities are used for the differential cryptanalysis of ARX ciphers that operate only with addition modulo \( 2^n \), bitwise XOR ( \( \oplus \)), and bit rotations ( \( \lll r \)). A complete characterization of differentials whose probability exceeds \( 1/4 \) is obtained. All possible values of their probabilities are \( 1/3 + 4^{2 - i} / 6 \) for \( i \in \{1, \dots , n\} \). We describe differentials with each of these probabilities and calculate the number of these values. We also calculate the number of all considered differentials. It is \( 48n - 68 \) for \( x \oplus y \) and \( 24n - 30 \) for \( (x \oplus y) \lll r \), where \( n \geq 2 \). We compare differentials of both mappings under the given constraint.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied and Industrial Mathematics
Journal of Applied and Industrial Mathematics Engineering-Industrial and Manufacturing Engineering
CiteScore
1.00
自引率
0.00%
发文量
16
期刊介绍: Journal of Applied and Industrial Mathematics  is a journal that publishes original and review articles containing theoretical results and those of interest for applications in various branches of industry. The journal topics include the qualitative theory of differential equations in application to mechanics, physics, chemistry, biology, technical and natural processes; mathematical modeling in mechanics, physics, engineering, chemistry, biology, ecology, medicine, etc.; control theory; discrete optimization; discrete structures and extremum problems; combinatorics; control and reliability of discrete circuits; mathematical programming; mathematical models and methods for making optimal decisions; models of theory of scheduling, location and replacement of equipment; modeling the control processes; development and analysis of algorithms; synthesis and complexity of control systems; automata theory; graph theory; game theory and its applications; coding theory; scheduling theory; and theory of circuits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信