基于 GNN 的电路拓扑感知多变量模型,用于 CCM 和 DCM 中 DC-DC 转换器的动态预测

Ahmed K. Khamis, Mohammed Agamy
{"title":"基于 GNN 的电路拓扑感知多变量模型,用于 CCM 和 DCM 中 DC-DC 转换器的动态预测","authors":"Ahmed K. Khamis, Mohammed Agamy","doi":"10.1007/s00521-024-10293-0","DOIUrl":null,"url":null,"abstract":"<p>A regression model based on graph neural network, tailored for electric circuit dynamics prediction is introduced, providing converter performance predictions on converter circuit level and internal parameter variations. Regardless of the number of components or connections present in a converter circuit, the proposed model can be readily scaled to incorporate different converter circuit topologies. Moreover, the model can be used to analyse converter circuits with any number of circuit components and any control parameters variation. To enable the use of machine learning methods and applications, all physical and switching circuit properties such as converter circuits operating in continuous conduction mode or discontinuous conduction mode are accurately mapped to graph representation. Three of the most common converters (Buck, Boost, and Buck-boost) are used as example circuits applied to model and the target is to predict the gain and current ripples in inductor. The model achieves 99.51% on the <span>\\(R^2\\)</span> measure and a mean square error of 0.0263.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circuit topology aware GNN-based multi-variable model for DC-DC converters dynamics prediction in CCM and DCM\",\"authors\":\"Ahmed K. Khamis, Mohammed Agamy\",\"doi\":\"10.1007/s00521-024-10293-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A regression model based on graph neural network, tailored for electric circuit dynamics prediction is introduced, providing converter performance predictions on converter circuit level and internal parameter variations. Regardless of the number of components or connections present in a converter circuit, the proposed model can be readily scaled to incorporate different converter circuit topologies. Moreover, the model can be used to analyse converter circuits with any number of circuit components and any control parameters variation. To enable the use of machine learning methods and applications, all physical and switching circuit properties such as converter circuits operating in continuous conduction mode or discontinuous conduction mode are accurately mapped to graph representation. Three of the most common converters (Buck, Boost, and Buck-boost) are used as example circuits applied to model and the target is to predict the gain and current ripples in inductor. The model achieves 99.51% on the <span>\\\\(R^2\\\\)</span> measure and a mean square error of 0.0263.</p>\",\"PeriodicalId\":18925,\"journal\":{\"name\":\"Neural Computing and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-024-10293-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10293-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于图神经网络的回归模型,该模型专为电路动态预测量身定制,可根据转换器电路水平和内部参数变化提供转换器性能预测。无论转换器电路中存在多少组件或连接,所提出的模型都可以很容易地进行扩展,以纳入不同的转换器电路拓扑结构。此外,该模型还可用于分析具有任意数量电路元件和任意控制参数变化的转换器电路。为了能够使用机器学习方法和应用,所有物理和开关电路特性,如转换器电路在连续导通模式或非连续导通模式下的运行,都被精确地映射到图形表示法中。三个最常见的转换器(降压、升压和降压-升压)被用作应用于模型的示例电路,目标是预测电感器的增益和电流纹波。该模型的 \(R^2\) 测量值达到 99.51%,均方误差为 0.0263。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Circuit topology aware GNN-based multi-variable model for DC-DC converters dynamics prediction in CCM and DCM

Circuit topology aware GNN-based multi-variable model for DC-DC converters dynamics prediction in CCM and DCM

A regression model based on graph neural network, tailored for electric circuit dynamics prediction is introduced, providing converter performance predictions on converter circuit level and internal parameter variations. Regardless of the number of components or connections present in a converter circuit, the proposed model can be readily scaled to incorporate different converter circuit topologies. Moreover, the model can be used to analyse converter circuits with any number of circuit components and any control parameters variation. To enable the use of machine learning methods and applications, all physical and switching circuit properties such as converter circuits operating in continuous conduction mode or discontinuous conduction mode are accurately mapped to graph representation. Three of the most common converters (Buck, Boost, and Buck-boost) are used as example circuits applied to model and the target is to predict the gain and current ripples in inductor. The model achieves 99.51% on the \(R^2\) measure and a mean square error of 0.0263.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信