{"title":"强制作为访问小型扩展的本地方法","authors":"Desmond Lau","doi":"arxiv-2409.03441","DOIUrl":null,"url":null,"abstract":"Fix a set-theoretic universe $V$. We look at small extensions of $V$ as\ngeneralised degrees of computability over $V$. We also formalise and\ninvestigate the complexity of certain methods one can use to define, in $V$,\nsubclasses of degrees over $V$. Finally, we give a nice characterisation of the\ncomplexity of forcing within this framework.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forcing as a Local Method of Accessing Small Extensions\",\"authors\":\"Desmond Lau\",\"doi\":\"arxiv-2409.03441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fix a set-theoretic universe $V$. We look at small extensions of $V$ as\\ngeneralised degrees of computability over $V$. We also formalise and\\ninvestigate the complexity of certain methods one can use to define, in $V$,\\nsubclasses of degrees over $V$. Finally, we give a nice characterisation of the\\ncomplexity of forcing within this framework.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forcing as a Local Method of Accessing Small Extensions
Fix a set-theoretic universe $V$. We look at small extensions of $V$ as
generalised degrees of computability over $V$. We also formalise and
investigate the complexity of certain methods one can use to define, in $V$,
subclasses of degrees over $V$. Finally, we give a nice characterisation of the
complexity of forcing within this framework.