用基础演绎法进行悖论推理

Bryan Ford
{"title":"用基础演绎法进行悖论推理","authors":"Bryan Ford","doi":"arxiv-2409.08243","DOIUrl":null,"url":null,"abstract":"How can we reason around logical paradoxes without falling into them? This\npaper introduces grounded deduction or GD, a Kripke-inspired approach to\nfirst-order logic and arithmetic that is neither classical nor intuitionistic,\nbut nevertheless appears both pragmatically usable and intuitively justifiable.\nGD permits the direct expression of unrestricted recursive definitions -\nincluding paradoxical ones such as 'L := not L' - while adding dynamic typing\npremises to certain inference rules so that such paradoxes do not lead to\ninconsistency. This paper constitutes a preliminary development and\ninvestigation of grounded deduction, to be extended with further elaboration\nand deeper analysis of its intriguing properties.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reasoning Around Paradox with Grounded Deduction\",\"authors\":\"Bryan Ford\",\"doi\":\"arxiv-2409.08243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How can we reason around logical paradoxes without falling into them? This\\npaper introduces grounded deduction or GD, a Kripke-inspired approach to\\nfirst-order logic and arithmetic that is neither classical nor intuitionistic,\\nbut nevertheless appears both pragmatically usable and intuitively justifiable.\\nGD permits the direct expression of unrestricted recursive definitions -\\nincluding paradoxical ones such as 'L := not L' - while adding dynamic typing\\npremises to certain inference rules so that such paradoxes do not lead to\\ninconsistency. This paper constitutes a preliminary development and\\ninvestigation of grounded deduction, to be extended with further elaboration\\nand deeper analysis of its intriguing properties.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们怎样才能绕过逻辑悖论进行推理而不陷入悖论呢?GD 允许直接表达无限制的递归定义--包括 "L := not L "这样的悖论定义--同时为某些推理规则添加了动态类型预设,从而使这类悖论不会导致不一致。本文是对基础演绎法的初步发展和研究,我们还将进一步阐述和深入分析其引人入胜的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reasoning Around Paradox with Grounded Deduction
How can we reason around logical paradoxes without falling into them? This paper introduces grounded deduction or GD, a Kripke-inspired approach to first-order logic and arithmetic that is neither classical nor intuitionistic, but nevertheless appears both pragmatically usable and intuitively justifiable. GD permits the direct expression of unrestricted recursive definitions - including paradoxical ones such as 'L := not L' - while adding dynamic typing premises to certain inference rules so that such paradoxes do not lead to inconsistency. This paper constitutes a preliminary development and investigation of grounded deduction, to be extended with further elaboration and deeper analysis of its intriguing properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信