中间模型和金纳-瓦格纳原理

Asaf Karagila, Jonathan Schilhan
{"title":"中间模型和金纳-瓦格纳原理","authors":"Asaf Karagila, Jonathan Schilhan","doi":"arxiv-2409.07352","DOIUrl":null,"url":null,"abstract":"Kinna--Wagner Principles state that every set can be mapped into some fixed\niterated power set of an ordinal, and we write $\\mathsf{KWP}$ to denote that\nthere is some $\\alpha$ for which this holds. The Kinna--Wagner Conjecture,\nformulated by the first author in [9], states that if $V$ is a model of\n$\\mathsf{ZF+KWP}$ and $G$ is a $V$-generic filter, then whenever $W$ is an\nintermediate model of $\\mathsf{ZF}$, that is $V\\subseteq W\\subseteq V[G]$, then\n$W=V(x)$ for some $x$ if and only if $W$ satisfies $\\mathsf{KWP}$. In this work\nwe prove the conjecture and generalise it even further. We include a brief\nhistorical overview of Kinna--Wagner Principles and new results about\nKinna--Wagner Principles in the multiverse of sets.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intermediate models and Kinna--Wagner Principles\",\"authors\":\"Asaf Karagila, Jonathan Schilhan\",\"doi\":\"arxiv-2409.07352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kinna--Wagner Principles state that every set can be mapped into some fixed\\niterated power set of an ordinal, and we write $\\\\mathsf{KWP}$ to denote that\\nthere is some $\\\\alpha$ for which this holds. The Kinna--Wagner Conjecture,\\nformulated by the first author in [9], states that if $V$ is a model of\\n$\\\\mathsf{ZF+KWP}$ and $G$ is a $V$-generic filter, then whenever $W$ is an\\nintermediate model of $\\\\mathsf{ZF}$, that is $V\\\\subseteq W\\\\subseteq V[G]$, then\\n$W=V(x)$ for some $x$ if and only if $W$ satisfies $\\\\mathsf{KWP}$. In this work\\nwe prove the conjecture and generalise it even further. We include a brief\\nhistorical overview of Kinna--Wagner Principles and new results about\\nKinna--Wagner Principles in the multiverse of sets.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金纳--瓦格纳原理指出,每个集合都可以映射成某个序数的固定iterated幂集,我们用$mathsf{KWP}$来表示有某个$\alpha$成立。第一作者在[9]中提出的Kinna--Wagner猜想指出,如果$V$是$\mathsf{ZF+KWP}$的一个模型,且$G$是一个$V$泛函滤波器、那么只要 $W$ 是 $mathsf{ZF}$ 的中间模型,即 $V (subseteq W (subseteq V[G])$,那么对于某个 $x$ 而言,当且仅当 $W$ 满足 $mathsf{KWP}$ 时,$W=V(x)$。在这项工作中,我们证明了这一猜想,并将其进一步推广。我们将简要回顾金纳--瓦格纳原理的历史,并介绍在集合的多重宇宙中有关金纳--瓦格纳原理的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intermediate models and Kinna--Wagner Principles
Kinna--Wagner Principles state that every set can be mapped into some fixed iterated power set of an ordinal, and we write $\mathsf{KWP}$ to denote that there is some $\alpha$ for which this holds. The Kinna--Wagner Conjecture, formulated by the first author in [9], states that if $V$ is a model of $\mathsf{ZF+KWP}$ and $G$ is a $V$-generic filter, then whenever $W$ is an intermediate model of $\mathsf{ZF}$, that is $V\subseteq W\subseteq V[G]$, then $W=V(x)$ for some $x$ if and only if $W$ satisfies $\mathsf{KWP}$. In this work we prove the conjecture and generalise it even further. We include a brief historical overview of Kinna--Wagner Principles and new results about Kinna--Wagner Principles in the multiverse of sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信