GeO$_2$ 玻璃中的中程阶:使用机器学习原子间势的分子动力学与实验数据的反向蒙特卡洛拟合的比较

Kenta Matsutani, Shusuke Kasamatsu, Takeshi Usuki
{"title":"GeO$_2$ 玻璃中的中程阶:使用机器学习原子间势的分子动力学与实验数据的反向蒙特卡洛拟合的比较","authors":"Kenta Matsutani, Shusuke Kasamatsu, Takeshi Usuki","doi":"arxiv-2409.06982","DOIUrl":null,"url":null,"abstract":"The short and intermediate-range order in GeO$_2$ glass are investigated by\nmolecular dynamics using machine-learning interatomic potential trained on ab\ninitio calculation data and compared with reverse Monte Carlo fitting of\nneutron diffraction data. To characterize the structural differences in each\nmodel, the total/partial structure factors, coordination number, ring size and\nshape distributions, and persistent homology analysis were performed. These\nresults show that although the two approaches yield similar two-body\ncorrelations, they can lead to three-dimensional models with very different\nshort and intermediate-range ordering. A clear difference was observed\nespecially in the ring distributions; RMC models exhibit a broad distribution\nin the ring size distribution, while neural network potential molecular\ndynamics yield much narrower ring distributions. This confirms that the density\nfunctional approximation in the ab initio calculations determines the preferred\nnetwork assembly more strictly than RMC with simple coordination constraints\nand neutron diffraction data with isotope substitution.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of intermediate-range order in GeO$_2$ glass: molecular dynamics using machine-learning interatomic potential vs.\\\\ reverse Monte Carlo fitting to experimental data\",\"authors\":\"Kenta Matsutani, Shusuke Kasamatsu, Takeshi Usuki\",\"doi\":\"arxiv-2409.06982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The short and intermediate-range order in GeO$_2$ glass are investigated by\\nmolecular dynamics using machine-learning interatomic potential trained on ab\\ninitio calculation data and compared with reverse Monte Carlo fitting of\\nneutron diffraction data. To characterize the structural differences in each\\nmodel, the total/partial structure factors, coordination number, ring size and\\nshape distributions, and persistent homology analysis were performed. These\\nresults show that although the two approaches yield similar two-body\\ncorrelations, they can lead to three-dimensional models with very different\\nshort and intermediate-range ordering. A clear difference was observed\\nespecially in the ring distributions; RMC models exhibit a broad distribution\\nin the ring size distribution, while neural network potential molecular\\ndynamics yield much narrower ring distributions. This confirms that the density\\nfunctional approximation in the ab initio calculations determines the preferred\\nnetwork assembly more strictly than RMC with simple coordination constraints\\nand neutron diffraction data with isotope substitution.\",\"PeriodicalId\":501234,\"journal\":{\"name\":\"arXiv - PHYS - Materials Science\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究人员利用基于 abinitio 计算数据训练的机器学习原子间势,通过分子动力学研究了 GeO$_2$ 玻璃中的短程和中程阶次,并与中子衍射数据的反向蒙特卡罗拟合进行了比较。为了描述每个模型的结构差异,研究人员进行了总/部分结构因子、配位数、环尺寸和形状分布以及持久同源性分析。结果表明,尽管这两种方法产生了相似的二体相关性,但它们可以导致具有非常不同的短程和中程排序的三维模型。特别是在环的分布上观察到了明显的差异;RMC 模型在环的大小分布上表现出了宽广的分布,而神经网络势能分子动力学则产生了窄得多的环分布。这证实了 ab initio 计算中的密度函数近似比使用简单配位约束的 RMC 和同位素置换的中子衍射数据更严格地确定了首选的网络组装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of intermediate-range order in GeO$_2$ glass: molecular dynamics using machine-learning interatomic potential vs.\ reverse Monte Carlo fitting to experimental data
The short and intermediate-range order in GeO$_2$ glass are investigated by molecular dynamics using machine-learning interatomic potential trained on ab initio calculation data and compared with reverse Monte Carlo fitting of neutron diffraction data. To characterize the structural differences in each model, the total/partial structure factors, coordination number, ring size and shape distributions, and persistent homology analysis were performed. These results show that although the two approaches yield similar two-body correlations, they can lead to three-dimensional models with very different short and intermediate-range ordering. A clear difference was observed especially in the ring distributions; RMC models exhibit a broad distribution in the ring size distribution, while neural network potential molecular dynamics yield much narrower ring distributions. This confirms that the density functional approximation in the ab initio calculations determines the preferred network assembly more strictly than RMC with simple coordination constraints and neutron diffraction data with isotope substitution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信