多模态合成编辑和检索概览

Suyan Li, Fuxiang Huang, Lei Zhang
{"title":"多模态合成编辑和检索概览","authors":"Suyan Li, Fuxiang Huang, Lei Zhang","doi":"arxiv-2409.05405","DOIUrl":null,"url":null,"abstract":"In the real world, where information is abundant and diverse across different\nmodalities, understanding and utilizing various data types to improve retrieval\nsystems is a key focus of research. Multimodal composite retrieval integrates\ndiverse modalities such as text, image and audio, etc. to provide more\naccurate, personalized, and contextually relevant results. To facilitate a\ndeeper understanding of this promising direction, this survey explores\nmultimodal composite editing and retrieval in depth, covering image-text\ncomposite editing, image-text composite retrieval, and other multimodal\ncomposite retrieval. In this survey, we systematically organize the application\nscenarios, methods, benchmarks, experiments, and future directions. Multimodal\nlearning is a hot topic in large model era, and have also witnessed some\nsurveys in multimodal learning and vision-language models with transformers\npublished in the PAMI journal. To the best of our knowledge, this survey is the\nfirst comprehensive review of the literature on multimodal composite retrieval,\nwhich is a timely complement of multimodal fusion to existing reviews. To help\nreaders' quickly track this field, we build the project page for this survey,\nwhich can be found at\nhttps://github.com/fuxianghuang1/Multimodal-Composite-Editing-and-Retrieval.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey of Multimodal Composite Editing and Retrieval\",\"authors\":\"Suyan Li, Fuxiang Huang, Lei Zhang\",\"doi\":\"arxiv-2409.05405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the real world, where information is abundant and diverse across different\\nmodalities, understanding and utilizing various data types to improve retrieval\\nsystems is a key focus of research. Multimodal composite retrieval integrates\\ndiverse modalities such as text, image and audio, etc. to provide more\\naccurate, personalized, and contextually relevant results. To facilitate a\\ndeeper understanding of this promising direction, this survey explores\\nmultimodal composite editing and retrieval in depth, covering image-text\\ncomposite editing, image-text composite retrieval, and other multimodal\\ncomposite retrieval. In this survey, we systematically organize the application\\nscenarios, methods, benchmarks, experiments, and future directions. Multimodal\\nlearning is a hot topic in large model era, and have also witnessed some\\nsurveys in multimodal learning and vision-language models with transformers\\npublished in the PAMI journal. To the best of our knowledge, this survey is the\\nfirst comprehensive review of the literature on multimodal composite retrieval,\\nwhich is a timely complement of multimodal fusion to existing reviews. To help\\nreaders' quickly track this field, we build the project page for this survey,\\nwhich can be found at\\nhttps://github.com/fuxianghuang1/Multimodal-Composite-Editing-and-Retrieval.\",\"PeriodicalId\":501480,\"journal\":{\"name\":\"arXiv - CS - Multimedia\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现实世界中,不同模式的信息丰富多样,了解和利用各种数据类型来改进检索系统是研究的重点。多模态复合检索整合了文本、图像和音频等多种模态,以提供更准确、个性化和与上下文相关的结果。为了加深对这一前景广阔的研究方向的理解,本调查深入探讨了多模态复合编辑和检索,包括图像-文本复合编辑、图像-文本复合检索和其他多模态复合检索。在本调查中,我们系统地整理了应用场景、方法、基准、实验和未来方向。多模态学习是大模型时代的热门话题,我们也在 PAMI 期刊上发表了一些关于多模态学习和带有转换器的视觉语言模型的研究。据我们所知,本调查是对多模态复合检索文献的首次全面评述,是对现有评述中多模态融合的及时补充。为了帮助读者快速跟踪这一领域,我们为这份调查报告建立了项目页面,网址是:https://github.com/fuxianghuang1/Multimodal-Composite-Editing-and-Retrieval。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey of Multimodal Composite Editing and Retrieval
In the real world, where information is abundant and diverse across different modalities, understanding and utilizing various data types to improve retrieval systems is a key focus of research. Multimodal composite retrieval integrates diverse modalities such as text, image and audio, etc. to provide more accurate, personalized, and contextually relevant results. To facilitate a deeper understanding of this promising direction, this survey explores multimodal composite editing and retrieval in depth, covering image-text composite editing, image-text composite retrieval, and other multimodal composite retrieval. In this survey, we systematically organize the application scenarios, methods, benchmarks, experiments, and future directions. Multimodal learning is a hot topic in large model era, and have also witnessed some surveys in multimodal learning and vision-language models with transformers published in the PAMI journal. To the best of our knowledge, this survey is the first comprehensive review of the literature on multimodal composite retrieval, which is a timely complement of multimodal fusion to existing reviews. To help readers' quickly track this field, we build the project page for this survey, which can be found at https://github.com/fuxianghuang1/Multimodal-Composite-Editing-and-Retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信