Shuqi Qin;Shenghao Liu;Shengjie Ye;Xiaoxuan Fan;Minmin Cheng;Yuanyuan He;Xianjun Deng;Jong Hyuk Park
{"title":"基于优先级深度强化学习的部分标记异常数据检测方法,适用于消费电子产品安全","authors":"Shuqi Qin;Shenghao Liu;Shengjie Ye;Xiaoxuan Fan;Minmin Cheng;Yuanyuan He;Xianjun Deng;Jong Hyuk Park","doi":"10.1109/TCE.2024.3445629","DOIUrl":null,"url":null,"abstract":"Anomalies within data flows in the Internet of Things environment can potentially result in security vulnerabilities in consumer electronics. Therefore, it is crucial to effectively detect anomaly data to safeguard the reliability and continuous functionality of consumer electronics. Existing related works either learn from unlabeled data using unsupervised methods or leverage the limited labeled data to improve detection performance by semi-supervised methods. However, these methods usually overfit specific types of known anomalies or ignore the uncertainty when model training. To this end, we design a novel approach to jointly optimize the end-to-end detection of labeled and unlabeled anomalies. Specifically, the anomaly data detection problem investigated is first reformulated as a Markov decision process. Then, a partially labeled anomaly data detection approach (PANDA) based on prioritized deep deterministic policy gradient is proposed, which considers uncertainty when the agent makes decisions and can learn from the labeled known anomalies while continuously exploring and detecting prospective anomalies in unlabeled data. Extensive experiments on 13 datasets show that PANDA improves the AUC-ROC and AUC-PR by 3.0%-10.3% and 10.0%-73.5% and its robustness under the impact of anomaly contamination rates compared with four state-of-the-art competing methods.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"70 4","pages":"6452-6462"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Partially Labeled Anomaly Data Detection Approach Based on Prioritized Deep Reinforcement Learning for Consumer Electronics Security\",\"authors\":\"Shuqi Qin;Shenghao Liu;Shengjie Ye;Xiaoxuan Fan;Minmin Cheng;Yuanyuan He;Xianjun Deng;Jong Hyuk Park\",\"doi\":\"10.1109/TCE.2024.3445629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomalies within data flows in the Internet of Things environment can potentially result in security vulnerabilities in consumer electronics. Therefore, it is crucial to effectively detect anomaly data to safeguard the reliability and continuous functionality of consumer electronics. Existing related works either learn from unlabeled data using unsupervised methods or leverage the limited labeled data to improve detection performance by semi-supervised methods. However, these methods usually overfit specific types of known anomalies or ignore the uncertainty when model training. To this end, we design a novel approach to jointly optimize the end-to-end detection of labeled and unlabeled anomalies. Specifically, the anomaly data detection problem investigated is first reformulated as a Markov decision process. Then, a partially labeled anomaly data detection approach (PANDA) based on prioritized deep deterministic policy gradient is proposed, which considers uncertainty when the agent makes decisions and can learn from the labeled known anomalies while continuously exploring and detecting prospective anomalies in unlabeled data. Extensive experiments on 13 datasets show that PANDA improves the AUC-ROC and AUC-PR by 3.0%-10.3% and 10.0%-73.5% and its robustness under the impact of anomaly contamination rates compared with four state-of-the-art competing methods.\",\"PeriodicalId\":13208,\"journal\":{\"name\":\"IEEE Transactions on Consumer Electronics\",\"volume\":\"70 4\",\"pages\":\"6452-6462\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Consumer Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10638746/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10638746/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Partially Labeled Anomaly Data Detection Approach Based on Prioritized Deep Reinforcement Learning for Consumer Electronics Security
Anomalies within data flows in the Internet of Things environment can potentially result in security vulnerabilities in consumer electronics. Therefore, it is crucial to effectively detect anomaly data to safeguard the reliability and continuous functionality of consumer electronics. Existing related works either learn from unlabeled data using unsupervised methods or leverage the limited labeled data to improve detection performance by semi-supervised methods. However, these methods usually overfit specific types of known anomalies or ignore the uncertainty when model training. To this end, we design a novel approach to jointly optimize the end-to-end detection of labeled and unlabeled anomalies. Specifically, the anomaly data detection problem investigated is first reformulated as a Markov decision process. Then, a partially labeled anomaly data detection approach (PANDA) based on prioritized deep deterministic policy gradient is proposed, which considers uncertainty when the agent makes decisions and can learn from the labeled known anomalies while continuously exploring and detecting prospective anomalies in unlabeled data. Extensive experiments on 13 datasets show that PANDA improves the AUC-ROC and AUC-PR by 3.0%-10.3% and 10.0%-73.5% and its robustness under the impact of anomaly contamination rates compared with four state-of-the-art competing methods.
期刊介绍:
The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.