{"title":"球板问题的半解析封闭式解法","authors":"Remus-Daniel Ene, Nicolina Pop","doi":"10.3390/pr12091977","DOIUrl":null,"url":null,"abstract":"Mathematical models and numerical simulations are necessary to understand the dynamical behaviors of complex systems. The aim of this work is to investigate closed-form solutions for the ball–plate problem considering a system derived from an optimal control problem for ball–plate dynamics. The nonlinear properties of ball and plate control system are presented in this work. To semi-analytically solve this system, we explored a second-order nonlinear differential equation. Consequently, we obtained the approximate closed-form solutions by the Optimal Parametric Iteration Method (OPIM) using only one iteration. A comparison between the analytical and corresponding numerical procedures reflects the advantages of the first one. The accordance between the obtained results and the numerical ones highlights that the procedure used is accurate, effective, and good to implement in applications such as sliding mode control to the ball-and-plate problem.","PeriodicalId":20597,"journal":{"name":"Processes","volume":"37 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Analytical Closed-Form Solutions of the Ball–Plate Problem\",\"authors\":\"Remus-Daniel Ene, Nicolina Pop\",\"doi\":\"10.3390/pr12091977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematical models and numerical simulations are necessary to understand the dynamical behaviors of complex systems. The aim of this work is to investigate closed-form solutions for the ball–plate problem considering a system derived from an optimal control problem for ball–plate dynamics. The nonlinear properties of ball and plate control system are presented in this work. To semi-analytically solve this system, we explored a second-order nonlinear differential equation. Consequently, we obtained the approximate closed-form solutions by the Optimal Parametric Iteration Method (OPIM) using only one iteration. A comparison between the analytical and corresponding numerical procedures reflects the advantages of the first one. The accordance between the obtained results and the numerical ones highlights that the procedure used is accurate, effective, and good to implement in applications such as sliding mode control to the ball-and-plate problem.\",\"PeriodicalId\":20597,\"journal\":{\"name\":\"Processes\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Processes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/pr12091977\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/pr12091977","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Semi-Analytical Closed-Form Solutions of the Ball–Plate Problem
Mathematical models and numerical simulations are necessary to understand the dynamical behaviors of complex systems. The aim of this work is to investigate closed-form solutions for the ball–plate problem considering a system derived from an optimal control problem for ball–plate dynamics. The nonlinear properties of ball and plate control system are presented in this work. To semi-analytically solve this system, we explored a second-order nonlinear differential equation. Consequently, we obtained the approximate closed-form solutions by the Optimal Parametric Iteration Method (OPIM) using only one iteration. A comparison between the analytical and corresponding numerical procedures reflects the advantages of the first one. The accordance between the obtained results and the numerical ones highlights that the procedure used is accurate, effective, and good to implement in applications such as sliding mode control to the ball-and-plate problem.
期刊介绍:
Processes (ISSN 2227-9717) provides an advanced forum for process related research in chemistry, biology and allied engineering fields. The journal publishes regular research papers, communications, letters, short notes and reviews. Our aim is to encourage researchers to publish their experimental, theoretical and computational results in as much detail as necessary. There is no restriction on paper length or number of figures and tables.