{"title":"基于纺织材料的多层复合材料吸声行为的影响特性","authors":"Iwan Prasetiyo, Ainil Khairin Nisa, Gunawan Gunawan, Damar Rasti Adhika, Indra Sihar","doi":"10.1177/00405175241260434","DOIUrl":null,"url":null,"abstract":"Combining the micro-perforated panel, air gap, and porous material under a multi-layer composite absorber framework has been proved to help obtain absorption enhancement. Theoretically and experimentally, the multi-layer system can extend the absorption value and associated bandwidth, although the desired improvements are not always present. For this purpose, theoretical models, experimental validation, and sensitivity analysis are performed where woven fabric, air gap, and nonwoven are considered as micro-perforated panel, air gap, and porous material, respectively. It is expected that this leads to a better understanding, particularly of the most critical parameters affecting associated behaviors. This understanding should be beneficial for a practical design procedure amid many parameters involved in the composite textile material. For the same textile materials, the results show that not all parameters involved are important in determining overall behavior, while influential parameters dictating the resulting behaviors are different for different sequences of elementary textile material in the multi-layer composite. This suggests that selecting optimal design parameters in the multi-layer composite needs great care.","PeriodicalId":22323,"journal":{"name":"Textile Research Journal","volume":"113 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influential properties on sound-absorption behavior of textile material-based multi-layer composite\",\"authors\":\"Iwan Prasetiyo, Ainil Khairin Nisa, Gunawan Gunawan, Damar Rasti Adhika, Indra Sihar\",\"doi\":\"10.1177/00405175241260434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combining the micro-perforated panel, air gap, and porous material under a multi-layer composite absorber framework has been proved to help obtain absorption enhancement. Theoretically and experimentally, the multi-layer system can extend the absorption value and associated bandwidth, although the desired improvements are not always present. For this purpose, theoretical models, experimental validation, and sensitivity analysis are performed where woven fabric, air gap, and nonwoven are considered as micro-perforated panel, air gap, and porous material, respectively. It is expected that this leads to a better understanding, particularly of the most critical parameters affecting associated behaviors. This understanding should be beneficial for a practical design procedure amid many parameters involved in the composite textile material. For the same textile materials, the results show that not all parameters involved are important in determining overall behavior, while influential parameters dictating the resulting behaviors are different for different sequences of elementary textile material in the multi-layer composite. This suggests that selecting optimal design parameters in the multi-layer composite needs great care.\",\"PeriodicalId\":22323,\"journal\":{\"name\":\"Textile Research Journal\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Textile Research Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00405175241260434\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textile Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00405175241260434","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Influential properties on sound-absorption behavior of textile material-based multi-layer composite
Combining the micro-perforated panel, air gap, and porous material under a multi-layer composite absorber framework has been proved to help obtain absorption enhancement. Theoretically and experimentally, the multi-layer system can extend the absorption value and associated bandwidth, although the desired improvements are not always present. For this purpose, theoretical models, experimental validation, and sensitivity analysis are performed where woven fabric, air gap, and nonwoven are considered as micro-perforated panel, air gap, and porous material, respectively. It is expected that this leads to a better understanding, particularly of the most critical parameters affecting associated behaviors. This understanding should be beneficial for a practical design procedure amid many parameters involved in the composite textile material. For the same textile materials, the results show that not all parameters involved are important in determining overall behavior, while influential parameters dictating the resulting behaviors are different for different sequences of elementary textile material in the multi-layer composite. This suggests that selecting optimal design parameters in the multi-layer composite needs great care.
期刊介绍:
The Textile Research Journal is the leading peer reviewed Journal for textile research. It is devoted to the dissemination of fundamental, theoretical and applied scientific knowledge in materials, chemistry, manufacture and system sciences related to fibers, fibrous assemblies and textiles. The Journal serves authors and subscribers worldwide, and it is selective in accepting contributions on the basis of merit, novelty and originality.