{"title":"生物质热解模型:利用单颗粒模型研究反应产率","authors":"Alysson Dantas Ferreira, Suzana Dantas Ferreira, Severino Rodrigues de Farias Neto","doi":"10.1007/s43153-024-00500-9","DOIUrl":null,"url":null,"abstract":"<p>Pyrolysis has been essential in the context of renewable energies, offering an innovative approach for biomass and solid waste valorization. Therefore, mathematical models that can represent its phenomena are of fundamental importance in understanding the reaction progression and optimizing the process. In this sense, we sought to analyze the capability of single-particle models in representing the yields of pyrolysis reactions in fluidized beds. To describe the behavior and interaction between the phases, we utilized an Eulerian–Lagrangian CFD modeling approach, solving the continuity, momentum, energy, species, and turbulence equations using OpenFOAM. We adopted the multicomponent and multi-stage model to describe the kinetics of pyrolysis in three different types of biomass. The numerical results obtained for the yields of pyrolysis reactions using the proposed modeling approach showed good agreement with the experimental data reported in the literature. We observed a maximum discrepancy of 3% in the study of pure cellulose reaction, 5.14% in red oak, and 0.56% in sugarcane bagasse. Therefore, we concluded that the single-particle model accurately represents the yields of pyrolysis reactions, making it suitable for estimating yields and conversion rates, providing valuable insights into pyrolysis behavior, and aiding in developing projects and optimization studies.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrolysis modeling of biomass: study of reaction yields using a single-particle model\",\"authors\":\"Alysson Dantas Ferreira, Suzana Dantas Ferreira, Severino Rodrigues de Farias Neto\",\"doi\":\"10.1007/s43153-024-00500-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pyrolysis has been essential in the context of renewable energies, offering an innovative approach for biomass and solid waste valorization. Therefore, mathematical models that can represent its phenomena are of fundamental importance in understanding the reaction progression and optimizing the process. In this sense, we sought to analyze the capability of single-particle models in representing the yields of pyrolysis reactions in fluidized beds. To describe the behavior and interaction between the phases, we utilized an Eulerian–Lagrangian CFD modeling approach, solving the continuity, momentum, energy, species, and turbulence equations using OpenFOAM. We adopted the multicomponent and multi-stage model to describe the kinetics of pyrolysis in three different types of biomass. The numerical results obtained for the yields of pyrolysis reactions using the proposed modeling approach showed good agreement with the experimental data reported in the literature. We observed a maximum discrepancy of 3% in the study of pure cellulose reaction, 5.14% in red oak, and 0.56% in sugarcane bagasse. Therefore, we concluded that the single-particle model accurately represents the yields of pyrolysis reactions, making it suitable for estimating yields and conversion rates, providing valuable insights into pyrolysis behavior, and aiding in developing projects and optimization studies.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43153-024-00500-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00500-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Pyrolysis modeling of biomass: study of reaction yields using a single-particle model
Pyrolysis has been essential in the context of renewable energies, offering an innovative approach for biomass and solid waste valorization. Therefore, mathematical models that can represent its phenomena are of fundamental importance in understanding the reaction progression and optimizing the process. In this sense, we sought to analyze the capability of single-particle models in representing the yields of pyrolysis reactions in fluidized beds. To describe the behavior and interaction between the phases, we utilized an Eulerian–Lagrangian CFD modeling approach, solving the continuity, momentum, energy, species, and turbulence equations using OpenFOAM. We adopted the multicomponent and multi-stage model to describe the kinetics of pyrolysis in three different types of biomass. The numerical results obtained for the yields of pyrolysis reactions using the proposed modeling approach showed good agreement with the experimental data reported in the literature. We observed a maximum discrepancy of 3% in the study of pure cellulose reaction, 5.14% in red oak, and 0.56% in sugarcane bagasse. Therefore, we concluded that the single-particle model accurately represents the yields of pyrolysis reactions, making it suitable for estimating yields and conversion rates, providing valuable insights into pyrolysis behavior, and aiding in developing projects and optimization studies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.