{"title":"AlN-SiC 复合材料的电导活化能和微波辐射吸收特性","authors":"V. I. Chasnyk, D. V. Chasnyk, O. M. Kaidash","doi":"10.3103/S1063457624040026","DOIUrl":null,"url":null,"abstract":"<p>We investigated semiconductor composite materials of the AlN–50% SiC–Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> system, obtained by free sintering, which exhibit a high level of microwave absorption of 4.6 dB/mm. The activation energy values of electrical conductivity (<i>E</i><sub>a</sub>) for the obtained composites were calculated within the temperature range of 20–800°C. At temperatures close to room temperature (20–150 °C), <i>E</i><sub>a</sub> ranges from 0.120 to 0.075 eV and increases to 0.270–0.275 eV as the temperature rises to 350–800°C. The determined photon energy values of the electromagnetic wave, in the frequency range from 1 to 100 GHz, are from 4.13 × 10<sup>–6</sup> to 4.13 × 10<sup>–4</sup> eV. Using quantum electrodynamics at the atomic level, we described the process of microwave radiation absorption in the AlN–SiC semiconductor composites. Low-energy photons of electromagnetic waves incident on the surface of the AlN–SiC composite transfer their energy to the conduction electrons in the near-surface layers of the SiC phase and are absorbed by them. The conduction electrons emit photons at the same frequency of the electromagnetic wave, predominantly into the same SiC grains, within 10<sup>–8</sup> s. This interaction results in the absorption of electromagnetic radiation, leading to the dissipation of wave energy and subsequent heating of the entire composite: initially, the SiC phase particles and, subsequently, the AlN grains.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 4","pages":"285 - 292"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation Energy of Electrical Conductivity and Characteristics of Microwave Radiation Absorption in AlN–SiC Composite\",\"authors\":\"V. I. Chasnyk, D. V. Chasnyk, O. M. Kaidash\",\"doi\":\"10.3103/S1063457624040026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigated semiconductor composite materials of the AlN–50% SiC–Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> system, obtained by free sintering, which exhibit a high level of microwave absorption of 4.6 dB/mm. The activation energy values of electrical conductivity (<i>E</i><sub>a</sub>) for the obtained composites were calculated within the temperature range of 20–800°C. At temperatures close to room temperature (20–150 °C), <i>E</i><sub>a</sub> ranges from 0.120 to 0.075 eV and increases to 0.270–0.275 eV as the temperature rises to 350–800°C. The determined photon energy values of the electromagnetic wave, in the frequency range from 1 to 100 GHz, are from 4.13 × 10<sup>–6</sup> to 4.13 × 10<sup>–4</sup> eV. Using quantum electrodynamics at the atomic level, we described the process of microwave radiation absorption in the AlN–SiC semiconductor composites. Low-energy photons of electromagnetic waves incident on the surface of the AlN–SiC composite transfer their energy to the conduction electrons in the near-surface layers of the SiC phase and are absorbed by them. The conduction electrons emit photons at the same frequency of the electromagnetic wave, predominantly into the same SiC grains, within 10<sup>–8</sup> s. This interaction results in the absorption of electromagnetic radiation, leading to the dissipation of wave energy and subsequent heating of the entire composite: initially, the SiC phase particles and, subsequently, the AlN grains.</p>\",\"PeriodicalId\":670,\"journal\":{\"name\":\"Journal of Superhard Materials\",\"volume\":\"46 4\",\"pages\":\"285 - 292\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superhard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063457624040026\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457624040026","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Activation Energy of Electrical Conductivity and Characteristics of Microwave Radiation Absorption in AlN–SiC Composite
We investigated semiconductor composite materials of the AlN–50% SiC–Y3Al5O12 system, obtained by free sintering, which exhibit a high level of microwave absorption of 4.6 dB/mm. The activation energy values of electrical conductivity (Ea) for the obtained composites were calculated within the temperature range of 20–800°C. At temperatures close to room temperature (20–150 °C), Ea ranges from 0.120 to 0.075 eV and increases to 0.270–0.275 eV as the temperature rises to 350–800°C. The determined photon energy values of the electromagnetic wave, in the frequency range from 1 to 100 GHz, are from 4.13 × 10–6 to 4.13 × 10–4 eV. Using quantum electrodynamics at the atomic level, we described the process of microwave radiation absorption in the AlN–SiC semiconductor composites. Low-energy photons of electromagnetic waves incident on the surface of the AlN–SiC composite transfer their energy to the conduction electrons in the near-surface layers of the SiC phase and are absorbed by them. The conduction electrons emit photons at the same frequency of the electromagnetic wave, predominantly into the same SiC grains, within 10–8 s. This interaction results in the absorption of electromagnetic radiation, leading to the dissipation of wave energy and subsequent heating of the entire composite: initially, the SiC phase particles and, subsequently, the AlN grains.
期刊介绍:
Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.