有限符号等级的子移位

Pub Date : 2024-09-09 DOI:10.1017/etds.2024.45
SU GAO, RUIWEN LI
{"title":"有限符号等级的子移位","authors":"SU GAO, RUIWEN LI","doi":"10.1017/etds.2024.45","DOIUrl":null,"url":null,"abstract":"The definition of subshifts of finite symbolic rank is motivated by the finite rank measure-preserving transformations which have been extensively studied in ergodic theory. In this paper, we study subshifts of finite symbolic rank as essentially minimal Cantor systems. We show that minimal subshifts of finite symbolic rank have finite topological rank, and conversely, every minimal Cantor system of finite topological rank is either an odometer or conjugate to a minimal subshift of finite symbolic rank. We characterize the class of all minimal Cantor systems conjugate to a rank-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000452_inline1.png\"/> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> subshift and show that it is dense but not generic in the Polish space of all minimal Cantor systems. Within some different Polish coding spaces of subshifts, we also show that the rank-1 subshifts are dense but not generic. Finally, we study topological factors of minimal subshifts of finite symbolic rank. We show that every infinite odometer and every irrational rotation is the maximal equicontinuous factor of a minimal subshift of symbolic rank <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000452_inline2.png\"/> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and that a subshift factor of a minimal subshift of finite symbolic rank has finite symbolic rank.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subshifts of finite symbolic rank\",\"authors\":\"SU GAO, RUIWEN LI\",\"doi\":\"10.1017/etds.2024.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The definition of subshifts of finite symbolic rank is motivated by the finite rank measure-preserving transformations which have been extensively studied in ergodic theory. In this paper, we study subshifts of finite symbolic rank as essentially minimal Cantor systems. We show that minimal subshifts of finite symbolic rank have finite topological rank, and conversely, every minimal Cantor system of finite topological rank is either an odometer or conjugate to a minimal subshift of finite symbolic rank. We characterize the class of all minimal Cantor systems conjugate to a rank-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000452_inline1.png\\\"/> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> subshift and show that it is dense but not generic in the Polish space of all minimal Cantor systems. Within some different Polish coding spaces of subshifts, we also show that the rank-1 subshifts are dense but not generic. Finally, we study topological factors of minimal subshifts of finite symbolic rank. We show that every infinite odometer and every irrational rotation is the maximal equicontinuous factor of a minimal subshift of symbolic rank <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000452_inline2.png\\\"/> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and that a subshift factor of a minimal subshift of finite symbolic rank has finite symbolic rank.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有限符号秩子转移的定义是受有限秩保量变换的启发,而有限秩保量变换在遍历理论中已被广泛研究。在本文中,我们将有限符号秩的子移动本质上视为最小康托尔系统来研究。我们证明了有限符号秩的最小子移位具有有限拓扑秩,反过来说,每个有限拓扑秩的最小康托尔系统要么是有限符号秩的最小子移位的里程表,要么是其共轭。我们描述了与秩-1$子移位共轭的所有极小康托尔系统的类别,并证明它在所有极小康托尔系统的波兰空间中是密集的,但不是泛函的。在一些不同的子移位波兰编码空间中,我们也证明了秩-1 子移位是致密的,但不是泛函。最后,我们研究了有限符号秩的最小子转移的拓扑因子。我们证明了每一个无限里程表和每一个无理旋转都是符号秩为 2$ 的最小子移位的最大等连续因子,并且有限符号秩的最小子移位的子移位因子具有有限符号秩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Subshifts of finite symbolic rank
The definition of subshifts of finite symbolic rank is motivated by the finite rank measure-preserving transformations which have been extensively studied in ergodic theory. In this paper, we study subshifts of finite symbolic rank as essentially minimal Cantor systems. We show that minimal subshifts of finite symbolic rank have finite topological rank, and conversely, every minimal Cantor system of finite topological rank is either an odometer or conjugate to a minimal subshift of finite symbolic rank. We characterize the class of all minimal Cantor systems conjugate to a rank- $1$ subshift and show that it is dense but not generic in the Polish space of all minimal Cantor systems. Within some different Polish coding spaces of subshifts, we also show that the rank-1 subshifts are dense but not generic. Finally, we study topological factors of minimal subshifts of finite symbolic rank. We show that every infinite odometer and every irrational rotation is the maximal equicontinuous factor of a minimal subshift of symbolic rank $2$ , and that a subshift factor of a minimal subshift of finite symbolic rank has finite symbolic rank.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信