环上部分双曲阿贝尔作用的非刚性

Pub Date : 2024-09-09 DOI:10.1017/etds.2024.18
FEDERICO RODRIGUEZ HERTZ, ZHIREN WANG
{"title":"环上部分双曲阿贝尔作用的非刚性","authors":"FEDERICO RODRIGUEZ HERTZ, ZHIREN WANG","doi":"10.1017/etds.2024.18","DOIUrl":null,"url":null,"abstract":"We prove that every genuinely partially hyperbolic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S014338572400018X_inline2.png\"/> <jats:tex-math> $\\mathbb {Z}^r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-action by toral automorphisms can be perturbed in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S014338572400018X_inline3.png\"/> <jats:tex-math> $C^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-topology, so that the resulting action is continuously conjugate, but not <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S014338572400018X_inline4.png\"/> <jats:tex-math> $C^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-conjugate, to the original one.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-rigidity of partially hyperbolic abelian -actions on tori\",\"authors\":\"FEDERICO RODRIGUEZ HERTZ, ZHIREN WANG\",\"doi\":\"10.1017/etds.2024.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that every genuinely partially hyperbolic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S014338572400018X_inline2.png\\\"/> <jats:tex-math> $\\\\mathbb {Z}^r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-action by toral automorphisms can be perturbed in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S014338572400018X_inline3.png\\\"/> <jats:tex-math> $C^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-topology, so that the resulting action is continuously conjugate, but not <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S014338572400018X_inline4.png\\\"/> <jats:tex-math> $C^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-conjugate, to the original one.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,每一个真正的部分双曲$\mathbb {Z}^r$ -作用的环自动形都可以在$C^1$ -拓扑中被扰动,这样得到的作用与原始作用是连续共轭的,但不是$C^1$ -共轭的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Non-rigidity of partially hyperbolic abelian -actions on tori
We prove that every genuinely partially hyperbolic $\mathbb {Z}^r$ -action by toral automorphisms can be perturbed in $C^1$ -topology, so that the resulting action is continuously conjugate, but not $C^1$ -conjugate, to the original one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信