{"title":"开放区域上点双曲系统的符号动力学","authors":"CHUPENG WU, YUNHUA ZHOU","doi":"10.1017/etds.2024.47","DOIUrl":null,"url":null,"abstract":"Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000476_inline1.png\"/> <jats:tex-math> $f:M\\rightarrow M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on an open invariant subset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000476_inline2.png\"/> <jats:tex-math> $O\\subset M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto a subset of <jats:italic>O</jats:italic> that carries the same finite <jats:italic>f</jats:italic>-invariant measures as <jats:italic>O</jats:italic>. Our method relies upon shadowing theory of a recurrent-pointwise-pseudo-orbit that we introduce. As a canonical application, we estimate the number of closed orbits for <jats:italic>f</jats:italic>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symbolic dynamics for pointwise hyperbolic systems on open regions\",\"authors\":\"CHUPENG WU, YUNHUA ZHOU\",\"doi\":\"10.1017/etds.2024.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000476_inline1.png\\\"/> <jats:tex-math> $f:M\\\\rightarrow M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on an open invariant subset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000476_inline2.png\\\"/> <jats:tex-math> $O\\\\subset M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto a subset of <jats:italic>O</jats:italic> that carries the same finite <jats:italic>f</jats:italic>-invariant measures as <jats:italic>O</jats:italic>. Our method relies upon shadowing theory of a recurrent-pointwise-pseudo-orbit that we introduce. As a canonical application, we estimate the number of closed orbits for <jats:italic>f</jats:italic>.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在某些条件下,我们在开放不变子集 $O\subset M$ 上为点式双曲衍射 $f:M\rightarrow M$ 构造了一个可数马尔可夫分区,它允许 Lyapunov 指数为零。从这个分区出发,我们定义了一个符号扩展,它是有限对一的,并扩展到 O 的一个子集上,该子集携带与 O 相同的有限 f 不变度量。作为一个典型应用,我们估算了 f 的闭合轨道数。
Symbolic dynamics for pointwise hyperbolic systems on open regions
Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism $f:M\rightarrow M$ on an open invariant subset $O\subset M$ , which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto a subset of O that carries the same finite f-invariant measures as O. Our method relies upon shadowing theory of a recurrent-pointwise-pseudo-orbit that we introduce. As a canonical application, we estimate the number of closed orbits for f.