稳定和可接近移位空间的最小和近似实例

Pub Date : 2024-09-10 DOI:10.1017/etds.2024.43
MELIH EMIN CAN, JAKUB KONIECZNY, MICHAL KUPSA, DOMINIK KWIETNIAK
{"title":"稳定和可接近移位空间的最小和近似实例","authors":"MELIH EMIN CAN, JAKUB KONIECZNY, MICHAL KUPSA, DOMINIK KWIETNIAK","doi":"10.1017/etds.2024.43","DOIUrl":null,"url":null,"abstract":"We study shift spaces over a finite alphabet that can be approximated by mixing shifts of finite type in the sense of (pseudo)metrics connected to Ornstein’s <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline3.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> metric (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline4.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachable shift spaces). The class of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline5.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachable shifts can be considered as a topological analog of measure-theoretical Bernoulli systems. The notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline6.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachability, together with a closely connected notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline7.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing, was introduced by Konieczny, Kupsa, and Kwietniak [<jats:italic>Ergod. Th. &amp; Dynam. Sys.</jats:italic>43(3) (2023), 943–970]. These notions were developed with the aim of significantly generalizing specification properties. Indeed, many popular variants of the specification property, including the classic one and the almost/weak specification property, ensure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline8.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachability and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline9.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing. Here, we study further properties and connections between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline10.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline11.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachability. We prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline12.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing implies <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline13.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-stability (a notion recently introduced by Tim Austin). We show that for surjective shift spaces with the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline14.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing property the Hausdorff pseudodistance <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline15.png\"/> <jats:tex-math> ${\\bar d}^{\\mathrm {H}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> between shift spaces induced by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline16.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the same as the Hausdorff distance between their simplices of invariant measures with respect to the Hausdorff distance induced by Ornstein’s metric <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline17.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> between measures. We prove that without <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline18.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing this need not to be true (it is known that the former distance always bounds the latter). We provide examples illustrating these results, including minimal examples and proximal examples of shift spaces with the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline19.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing property. The existence of such shift spaces was announced in the earlier paper mentioned above. It shows that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline20.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing indeed generalizes the specification property.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal and proximal examples of -stable and -approachable shift spaces\",\"authors\":\"MELIH EMIN CAN, JAKUB KONIECZNY, MICHAL KUPSA, DOMINIK KWIETNIAK\",\"doi\":\"10.1017/etds.2024.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study shift spaces over a finite alphabet that can be approximated by mixing shifts of finite type in the sense of (pseudo)metrics connected to Ornstein’s <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline3.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> metric (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline4.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachable shift spaces). The class of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline5.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachable shifts can be considered as a topological analog of measure-theoretical Bernoulli systems. The notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline6.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachability, together with a closely connected notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline7.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing, was introduced by Konieczny, Kupsa, and Kwietniak [<jats:italic>Ergod. Th. &amp; Dynam. Sys.</jats:italic>43(3) (2023), 943–970]. These notions were developed with the aim of significantly generalizing specification properties. Indeed, many popular variants of the specification property, including the classic one and the almost/weak specification property, ensure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline8.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachability and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline9.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing. Here, we study further properties and connections between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline10.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline11.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachability. We prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline12.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing implies <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline13.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-stability (a notion recently introduced by Tim Austin). We show that for surjective shift spaces with the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline14.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing property the Hausdorff pseudodistance <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline15.png\\\"/> <jats:tex-math> ${\\\\bar d}^{\\\\mathrm {H}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> between shift spaces induced by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline16.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the same as the Hausdorff distance between their simplices of invariant measures with respect to the Hausdorff distance induced by Ornstein’s metric <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline17.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> between measures. We prove that without <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline18.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing this need not to be true (it is known that the former distance always bounds the latter). We provide examples illustrating these results, including minimal examples and proximal examples of shift spaces with the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline19.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing property. The existence of such shift spaces was announced in the earlier paper mentioned above. It shows that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline20.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing indeed generalizes the specification property.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究有限字母表上的移位空间,这些空间可以通过与奥恩斯坦的 $\bar {d}$ 度量相连的(伪)度量意义上的有限类型的混合移位来近似($\bar {d}$ -approachable shift spaces)。$\bar{d}$可接近移位类可被视为度量理论伯努利系统的拓扑类似物。$\bar {d}$ -可接近性的概念,以及与之密切相关的 $\bar {d}$ -阴影的概念,是由科尼茨尼、库普萨和克维特尼亚克提出的[Ergod.这些概念的提出,旨在极大地推广规范属性。事实上,规范属性的许多流行变体,包括经典变体和几乎/弱规范属性,都确保了$\bar {d}$可接近性和$\bar {d}$阴影。在这里,我们将进一步研究 $\bar {d}$ -shadowing 和 $\bar {d}$ -approachability 之间的性质和联系。我们证明$\bar {d}$阴影意味着$\bar {d}$稳定(这是蒂姆-奥斯汀最近提出的概念)。我们证明,对于具有$\bar {d}$ -shadowing性质的投射平移空间,由$\bar {d}$诱导的平移空间之间的豪斯多夫伪距${\bar d}^\{mathrm {H}}$与它们的不变度量简元之间的豪斯多夫距相同,都是由奥恩斯坦度量$\bar {d}$诱导的度量之间的豪斯多夫距。我们证明,如果没有$\bar {d}$的遮挡,这并不一定是真的(众所周知,前者的距离总是约束后者的)。我们举例说明了这些结果,包括具有 $\bar {d}$ -shadowing 特性的移位空间的最小例子和近似例子。这类移位空间的存在已在前面提到的论文中公布。它表明$\bar {d}$-shadowing确实概括了规范属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Minimal and proximal examples of -stable and -approachable shift spaces
We study shift spaces over a finite alphabet that can be approximated by mixing shifts of finite type in the sense of (pseudo)metrics connected to Ornstein’s $\bar {d}$ metric ( $\bar {d}$ -approachable shift spaces). The class of $\bar {d}$ -approachable shifts can be considered as a topological analog of measure-theoretical Bernoulli systems. The notion of $\bar {d}$ -approachability, together with a closely connected notion of $\bar {d}$ -shadowing, was introduced by Konieczny, Kupsa, and Kwietniak [Ergod. Th. & Dynam. Sys.43(3) (2023), 943–970]. These notions were developed with the aim of significantly generalizing specification properties. Indeed, many popular variants of the specification property, including the classic one and the almost/weak specification property, ensure $\bar {d}$ -approachability and $\bar {d}$ -shadowing. Here, we study further properties and connections between $\bar {d}$ -shadowing and $\bar {d}$ -approachability. We prove that $\bar {d}$ -shadowing implies $\bar {d}$ -stability (a notion recently introduced by Tim Austin). We show that for surjective shift spaces with the $\bar {d}$ -shadowing property the Hausdorff pseudodistance ${\bar d}^{\mathrm {H}}$ between shift spaces induced by $\bar {d}$ is the same as the Hausdorff distance between their simplices of invariant measures with respect to the Hausdorff distance induced by Ornstein’s metric $\bar {d}$ between measures. We prove that without $\bar {d}$ -shadowing this need not to be true (it is known that the former distance always bounds the latter). We provide examples illustrating these results, including minimal examples and proximal examples of shift spaces with the $\bar {d}$ -shadowing property. The existence of such shift spaces was announced in the earlier paper mentioned above. It shows that $\bar {d}$ -shadowing indeed generalizes the specification property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信