MELIH EMIN CAN, JAKUB KONIECZNY, MICHAL KUPSA, DOMINIK KWIETNIAK
{"title":"稳定和可接近移位空间的最小和近似实例","authors":"MELIH EMIN CAN, JAKUB KONIECZNY, MICHAL KUPSA, DOMINIK KWIETNIAK","doi":"10.1017/etds.2024.43","DOIUrl":null,"url":null,"abstract":"We study shift spaces over a finite alphabet that can be approximated by mixing shifts of finite type in the sense of (pseudo)metrics connected to Ornstein’s <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline3.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> metric (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline4.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachable shift spaces). The class of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline5.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachable shifts can be considered as a topological analog of measure-theoretical Bernoulli systems. The notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline6.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachability, together with a closely connected notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline7.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing, was introduced by Konieczny, Kupsa, and Kwietniak [<jats:italic>Ergod. Th. & Dynam. Sys.</jats:italic>43(3) (2023), 943–970]. These notions were developed with the aim of significantly generalizing specification properties. Indeed, many popular variants of the specification property, including the classic one and the almost/weak specification property, ensure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline8.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachability and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline9.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing. Here, we study further properties and connections between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline10.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline11.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachability. We prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline12.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing implies <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline13.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-stability (a notion recently introduced by Tim Austin). We show that for surjective shift spaces with the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline14.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing property the Hausdorff pseudodistance <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline15.png\"/> <jats:tex-math> ${\\bar d}^{\\mathrm {H}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> between shift spaces induced by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline16.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the same as the Hausdorff distance between their simplices of invariant measures with respect to the Hausdorff distance induced by Ornstein’s metric <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline17.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> between measures. We prove that without <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline18.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing this need not to be true (it is known that the former distance always bounds the latter). We provide examples illustrating these results, including minimal examples and proximal examples of shift spaces with the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline19.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing property. The existence of such shift spaces was announced in the earlier paper mentioned above. It shows that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000439_inline20.png\"/> <jats:tex-math> $\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing indeed generalizes the specification property.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal and proximal examples of -stable and -approachable shift spaces\",\"authors\":\"MELIH EMIN CAN, JAKUB KONIECZNY, MICHAL KUPSA, DOMINIK KWIETNIAK\",\"doi\":\"10.1017/etds.2024.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study shift spaces over a finite alphabet that can be approximated by mixing shifts of finite type in the sense of (pseudo)metrics connected to Ornstein’s <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline3.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> metric (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline4.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachable shift spaces). The class of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline5.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachable shifts can be considered as a topological analog of measure-theoretical Bernoulli systems. The notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline6.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachability, together with a closely connected notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline7.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing, was introduced by Konieczny, Kupsa, and Kwietniak [<jats:italic>Ergod. Th. & Dynam. Sys.</jats:italic>43(3) (2023), 943–970]. These notions were developed with the aim of significantly generalizing specification properties. Indeed, many popular variants of the specification property, including the classic one and the almost/weak specification property, ensure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline8.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachability and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline9.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing. Here, we study further properties and connections between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline10.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline11.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-approachability. We prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline12.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing implies <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline13.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-stability (a notion recently introduced by Tim Austin). We show that for surjective shift spaces with the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline14.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing property the Hausdorff pseudodistance <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline15.png\\\"/> <jats:tex-math> ${\\\\bar d}^{\\\\mathrm {H}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> between shift spaces induced by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline16.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the same as the Hausdorff distance between their simplices of invariant measures with respect to the Hausdorff distance induced by Ornstein’s metric <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline17.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> between measures. We prove that without <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline18.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing this need not to be true (it is known that the former distance always bounds the latter). We provide examples illustrating these results, including minimal examples and proximal examples of shift spaces with the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline19.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing property. The existence of such shift spaces was announced in the earlier paper mentioned above. It shows that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000439_inline20.png\\\"/> <jats:tex-math> $\\\\bar {d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shadowing indeed generalizes the specification property.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimal and proximal examples of -stable and -approachable shift spaces
We study shift spaces over a finite alphabet that can be approximated by mixing shifts of finite type in the sense of (pseudo)metrics connected to Ornstein’s $\bar {d}$ metric ( $\bar {d}$ -approachable shift spaces). The class of $\bar {d}$ -approachable shifts can be considered as a topological analog of measure-theoretical Bernoulli systems. The notion of $\bar {d}$ -approachability, together with a closely connected notion of $\bar {d}$ -shadowing, was introduced by Konieczny, Kupsa, and Kwietniak [Ergod. Th. & Dynam. Sys.43(3) (2023), 943–970]. These notions were developed with the aim of significantly generalizing specification properties. Indeed, many popular variants of the specification property, including the classic one and the almost/weak specification property, ensure $\bar {d}$ -approachability and $\bar {d}$ -shadowing. Here, we study further properties and connections between $\bar {d}$ -shadowing and $\bar {d}$ -approachability. We prove that $\bar {d}$ -shadowing implies $\bar {d}$ -stability (a notion recently introduced by Tim Austin). We show that for surjective shift spaces with the $\bar {d}$ -shadowing property the Hausdorff pseudodistance ${\bar d}^{\mathrm {H}}$ between shift spaces induced by $\bar {d}$ is the same as the Hausdorff distance between their simplices of invariant measures with respect to the Hausdorff distance induced by Ornstein’s metric $\bar {d}$ between measures. We prove that without $\bar {d}$ -shadowing this need not to be true (it is known that the former distance always bounds the latter). We provide examples illustrating these results, including minimal examples and proximal examples of shift spaces with the $\bar {d}$ -shadowing property. The existence of such shift spaces was announced in the earlier paper mentioned above. It shows that $\bar {d}$ -shadowing indeed generalizes the specification property.