素特性中的相对集合映射与赫克代数的 K 理论

IF 1.3 2区 数学 Q1 MATHEMATICS
W. Lück
{"title":"素特性中的相对集合映射与赫克代数的 K 理论","authors":"W. Lück","doi":"10.1007/s00208-024-02966-x","DOIUrl":null,"url":null,"abstract":"<p>We investigate the relative assembly map from the family of finite subgroups to the family of virtually cyclic subgroups for the algebraic <i>K</i>-theory of twisted group rings of a group <i>G</i> with coefficients in a regular ring <i>R</i> or, more generally, with coefficients in a regular additive category. They are known to be isomorphisms rationally. We show that it suffices to invert only those primes <i>p</i> for which <i>G</i> contains a non-trivial finite <i>p</i>-group and <i>p</i> is not invertible in <i>R</i>. The key ingredient is the detection of Nil-terms of a twisted group ring of a finite group <i>F</i> after localizing at <i>p</i> in terms of the <i>p</i>-subgroups of <i>F</i> using Verschiebungs and Frobenius operators. We construct and exploit the structure of a module over the ring of big Witt vectors on the Nil-terms. We analyze the algebraic <i>K</i>-theory of the Hecke algebras of subgroups of reductive <i>p</i>-adic groups in prime characteristic.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"62 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative assembly maps and the K-theory of Hecke algebras in prime characteristic\",\"authors\":\"W. Lück\",\"doi\":\"10.1007/s00208-024-02966-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the relative assembly map from the family of finite subgroups to the family of virtually cyclic subgroups for the algebraic <i>K</i>-theory of twisted group rings of a group <i>G</i> with coefficients in a regular ring <i>R</i> or, more generally, with coefficients in a regular additive category. They are known to be isomorphisms rationally. We show that it suffices to invert only those primes <i>p</i> for which <i>G</i> contains a non-trivial finite <i>p</i>-group and <i>p</i> is not invertible in <i>R</i>. The key ingredient is the detection of Nil-terms of a twisted group ring of a finite group <i>F</i> after localizing at <i>p</i> in terms of the <i>p</i>-subgroups of <i>F</i> using Verschiebungs and Frobenius operators. We construct and exploit the structure of a module over the ring of big Witt vectors on the Nil-terms. We analyze the algebraic <i>K</i>-theory of the Hecke algebras of subgroups of reductive <i>p</i>-adic groups in prime characteristic.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02966-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02966-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于系数在正则环 R 中或更广义地说,系数在正则加法范畴中的群 G 的扭曲群环的代数 K 理论,我们研究了从有限子群族到实际循环子群族的相对集合映射。众所周知,它们在理性上是同构的。我们证明,只需反转那些 G 包含一个非琐碎有限 p 群且 p 在 R 中不可反转的素数 p 即可。关键要素是使用 Verschiebungs 和 Frobenius 算子在有限群 F 的 p 子群中定位 p 之后,检测有限群 F 的扭曲群环的 Nil-terms。我们在 Nil-terms 上构建并利用了大维特向量环上的模块结构。我们分析了素特性还原 p-adic 群子群的赫克代数 K 理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative assembly maps and the K-theory of Hecke algebras in prime characteristic

We investigate the relative assembly map from the family of finite subgroups to the family of virtually cyclic subgroups for the algebraic K-theory of twisted group rings of a group G with coefficients in a regular ring R or, more generally, with coefficients in a regular additive category. They are known to be isomorphisms rationally. We show that it suffices to invert only those primes p for which G contains a non-trivial finite p-group and p is not invertible in R. The key ingredient is the detection of Nil-terms of a twisted group ring of a finite group F after localizing at p in terms of the p-subgroups of F using Verschiebungs and Frobenius operators. We construct and exploit the structure of a module over the ring of big Witt vectors on the Nil-terms. We analyze the algebraic K-theory of the Hecke algebras of subgroups of reductive p-adic groups in prime characteristic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信