Jieun Kim;Peng Zhou;Unbok Wi;Bomin Joo;Donguk Choi;Myeong-Lok Seol;Sravya Pulavarthi;Linfeng Sun;Heejun Yang;Woo Jong Yu;Jin-Woo Han;Sung-Mo Kang;Bai-Sun Kong
{"title":"基于具有短期可塑性的单层二维突触的仿生尖峰神经网络用于听觉脑干处理","authors":"Jieun Kim;Peng Zhou;Unbok Wi;Bomin Joo;Donguk Choi;Myeong-Lok Seol;Sravya Pulavarthi;Linfeng Sun;Heejun Yang;Woo Jong Yu;Jin-Woo Han;Sung-Mo Kang;Bai-Sun Kong","doi":"10.1109/TCDS.2024.3450915","DOIUrl":null,"url":null,"abstract":"In the sound localization of species, short-term depression (STD) plays an important role in maintaining interaural timing difference (ITD) sensitivity. In this article, a biomimetic spiking neural network (SNN) utilizing 2-D synaptic devices for mimicking biological sound localization is presented. A two-terminal monolayer device is used as the artificial synapse, whose temporal conductance change mimics the STD of a synapse. Alpha synaptic current and leaky integrate-and-fire (LIF) neuron models are used for realistic cortical operation. Lateral inhibition and superior olivary nucleus (SON) are adopted to increase the acuteness, to compensate for the interaural level difference (ILD)-induced disturbance, and to enlarge the sound intensity range. By combining solid-state STD synapses and bio-plausible cortical models with an ITD-based coincidence detection mechanism to mimic the auditory brainstem processing, our SNN achieved sound localization with a human-level resolution of 1°.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"17 2","pages":"247-258"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic Spiking Neural Network Based on Monolayer 2-D Synapse With Short-Term Plasticity for Auditory Brainstem Processing\",\"authors\":\"Jieun Kim;Peng Zhou;Unbok Wi;Bomin Joo;Donguk Choi;Myeong-Lok Seol;Sravya Pulavarthi;Linfeng Sun;Heejun Yang;Woo Jong Yu;Jin-Woo Han;Sung-Mo Kang;Bai-Sun Kong\",\"doi\":\"10.1109/TCDS.2024.3450915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the sound localization of species, short-term depression (STD) plays an important role in maintaining interaural timing difference (ITD) sensitivity. In this article, a biomimetic spiking neural network (SNN) utilizing 2-D synaptic devices for mimicking biological sound localization is presented. A two-terminal monolayer device is used as the artificial synapse, whose temporal conductance change mimics the STD of a synapse. Alpha synaptic current and leaky integrate-and-fire (LIF) neuron models are used for realistic cortical operation. Lateral inhibition and superior olivary nucleus (SON) are adopted to increase the acuteness, to compensate for the interaural level difference (ILD)-induced disturbance, and to enlarge the sound intensity range. By combining solid-state STD synapses and bio-plausible cortical models with an ITD-based coincidence detection mechanism to mimic the auditory brainstem processing, our SNN achieved sound localization with a human-level resolution of 1°.\",\"PeriodicalId\":54300,\"journal\":{\"name\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"volume\":\"17 2\",\"pages\":\"247-258\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10654777/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10654777/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Biomimetic Spiking Neural Network Based on Monolayer 2-D Synapse With Short-Term Plasticity for Auditory Brainstem Processing
In the sound localization of species, short-term depression (STD) plays an important role in maintaining interaural timing difference (ITD) sensitivity. In this article, a biomimetic spiking neural network (SNN) utilizing 2-D synaptic devices for mimicking biological sound localization is presented. A two-terminal monolayer device is used as the artificial synapse, whose temporal conductance change mimics the STD of a synapse. Alpha synaptic current and leaky integrate-and-fire (LIF) neuron models are used for realistic cortical operation. Lateral inhibition and superior olivary nucleus (SON) are adopted to increase the acuteness, to compensate for the interaural level difference (ILD)-induced disturbance, and to enlarge the sound intensity range. By combining solid-state STD synapses and bio-plausible cortical models with an ITD-based coincidence detection mechanism to mimic the auditory brainstem processing, our SNN achieved sound localization with a human-level resolution of 1°.
期刊介绍:
The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.