{"title":"应用 MGGP 预测边际土壤山坡顶上带状基脚的承载能力","authors":"Rana Acharyya, Arindam Dey","doi":"10.1007/s12205-024-1217-y","DOIUrl":null,"url":null,"abstract":"<p>A set of finite element investigations are performed to examine the maximum bearing strength of strip footings positioned on the crest of a cohesive-frictional marginal soil hillslope. In this regard, the influence of contributing geometrical and geotechnical parameters on the maximum bearing strength of the footing are illustrated. It is revealed that the nearness of slope face has negligible influence on the bearing strength of footing if it is located at a setback distance beyond six times the footing width. Further, using multi-gene genetic programming technique, a predictive relationship between the maximum bearing strength and the contributory factors is established and validated through relevant experimental findings. The hyper-parameters of the MGGP model are suitably optimized, as indicated by the coefficient of correlation attaining high magnitudes. A sensitivity analysis based on local perturbation is conducted to recognize the importance ranking of the contributory parameters. It is revealed that the friction angle of slope material predominantly influences the evaluation of maximum bearing strength for strip footing on slopes, followed by other contributing factors.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"10 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of MGGP in Predicting Bearing Capacity of a Strip Footing Resting on the Crest of a Marginal Soil Hillslope\",\"authors\":\"Rana Acharyya, Arindam Dey\",\"doi\":\"10.1007/s12205-024-1217-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A set of finite element investigations are performed to examine the maximum bearing strength of strip footings positioned on the crest of a cohesive-frictional marginal soil hillslope. In this regard, the influence of contributing geometrical and geotechnical parameters on the maximum bearing strength of the footing are illustrated. It is revealed that the nearness of slope face has negligible influence on the bearing strength of footing if it is located at a setback distance beyond six times the footing width. Further, using multi-gene genetic programming technique, a predictive relationship between the maximum bearing strength and the contributory factors is established and validated through relevant experimental findings. The hyper-parameters of the MGGP model are suitably optimized, as indicated by the coefficient of correlation attaining high magnitudes. A sensitivity analysis based on local perturbation is conducted to recognize the importance ranking of the contributory parameters. It is revealed that the friction angle of slope material predominantly influences the evaluation of maximum bearing strength for strip footing on slopes, followed by other contributing factors.</p>\",\"PeriodicalId\":17897,\"journal\":{\"name\":\"KSCE Journal of Civil Engineering\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KSCE Journal of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-1217-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-1217-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Application of MGGP in Predicting Bearing Capacity of a Strip Footing Resting on the Crest of a Marginal Soil Hillslope
A set of finite element investigations are performed to examine the maximum bearing strength of strip footings positioned on the crest of a cohesive-frictional marginal soil hillslope. In this regard, the influence of contributing geometrical and geotechnical parameters on the maximum bearing strength of the footing are illustrated. It is revealed that the nearness of slope face has negligible influence on the bearing strength of footing if it is located at a setback distance beyond six times the footing width. Further, using multi-gene genetic programming technique, a predictive relationship between the maximum bearing strength and the contributory factors is established and validated through relevant experimental findings. The hyper-parameters of the MGGP model are suitably optimized, as indicated by the coefficient of correlation attaining high magnitudes. A sensitivity analysis based on local perturbation is conducted to recognize the importance ranking of the contributory parameters. It is revealed that the friction angle of slope material predominantly influences the evaluation of maximum bearing strength for strip footing on slopes, followed by other contributing factors.
期刊介绍:
The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields.
The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering