斜坡附近刚性挡土墙横向破坏模式下砂土的主动土压力分析

IF 1.9 4区 工程技术 Q3 ENGINEERING, CIVIL
Lianheng Zhao, Zheng Zhong, Biao Zhao, Zhonglin Zeng, Xiaogen Gong, Shihong Hu
{"title":"斜坡附近刚性挡土墙横向破坏模式下砂土的主动土压力分析","authors":"Lianheng Zhao, Zheng Zhong, Biao Zhao, Zhonglin Zeng, Xiaogen Gong, Shihong Hu","doi":"10.1007/s12205-024-0846-5","DOIUrl":null,"url":null,"abstract":"<p>To accurately obtain the active earth pressure of a limited-width sandy fill behind a rigid retaining wall under translational failure, finite element limit analysis (FELA) was used to simulate the failure mechanism of the limited-width sandy fill behind the wall under the translational failure mode of the rigid retaining wall. Based on the different development characteristics of the sliding surface, three kinds of failure mode characteristics were identified. Semianalytical expressions of the active earth pressure were obtained by using the limit equilibrium method and the finite difference method, introducing the horizontal differential element and considering the soil arching effect behind the wall. The parameter analysis shows that the width-to-height ratio of the fill and the slope angle play a controlling role in the failure mode and that the position of the resultant force corresponding to the active earth pressure under different failure modes also changes significantly. The active earth pressure exerted on the retaining wall is maximized at a particular threshold of the friction angle at the wall–fill interface, which varies according to the geometric shape of the backfill and its internal friction angle.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"26 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Active Earth Pressure of Sandy Soil under the Translational Failure Mode of Rigid Retaining Walls Near Slopes\",\"authors\":\"Lianheng Zhao, Zheng Zhong, Biao Zhao, Zhonglin Zeng, Xiaogen Gong, Shihong Hu\",\"doi\":\"10.1007/s12205-024-0846-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To accurately obtain the active earth pressure of a limited-width sandy fill behind a rigid retaining wall under translational failure, finite element limit analysis (FELA) was used to simulate the failure mechanism of the limited-width sandy fill behind the wall under the translational failure mode of the rigid retaining wall. Based on the different development characteristics of the sliding surface, three kinds of failure mode characteristics were identified. Semianalytical expressions of the active earth pressure were obtained by using the limit equilibrium method and the finite difference method, introducing the horizontal differential element and considering the soil arching effect behind the wall. The parameter analysis shows that the width-to-height ratio of the fill and the slope angle play a controlling role in the failure mode and that the position of the resultant force corresponding to the active earth pressure under different failure modes also changes significantly. The active earth pressure exerted on the retaining wall is maximized at a particular threshold of the friction angle at the wall–fill interface, which varies according to the geometric shape of the backfill and its internal friction angle.</p>\",\"PeriodicalId\":17897,\"journal\":{\"name\":\"KSCE Journal of Civil Engineering\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KSCE Journal of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-0846-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-0846-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

为准确获取刚性挡土墙后有限宽度砂质填土在平移破坏下的活动土压力,采用有限元极限分析法(FELA)模拟了刚性挡土墙平移破坏模式下墙后有限宽度砂质填土的破坏机理。根据滑动面的不同发展特征,确定了三种破坏模式特征。采用极限平衡法和有限差分法,引入水平微分元并考虑墙后土拱效应,得到了活动土压力的半解析表达式。参数分析表明,填土的宽高比和坡角对破坏模式起控制作用,不同破坏模式下主动土压力所对应的结果力位置也有显著变化。在挡土墙与填土界面摩擦角的特定临界值处,对挡土墙施加的主动土压力达到最大,该临界值随回填土的几何形状及其内部摩擦角的不同而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the Active Earth Pressure of Sandy Soil under the Translational Failure Mode of Rigid Retaining Walls Near Slopes

To accurately obtain the active earth pressure of a limited-width sandy fill behind a rigid retaining wall under translational failure, finite element limit analysis (FELA) was used to simulate the failure mechanism of the limited-width sandy fill behind the wall under the translational failure mode of the rigid retaining wall. Based on the different development characteristics of the sliding surface, three kinds of failure mode characteristics were identified. Semianalytical expressions of the active earth pressure were obtained by using the limit equilibrium method and the finite difference method, introducing the horizontal differential element and considering the soil arching effect behind the wall. The parameter analysis shows that the width-to-height ratio of the fill and the slope angle play a controlling role in the failure mode and that the position of the resultant force corresponding to the active earth pressure under different failure modes also changes significantly. The active earth pressure exerted on the retaining wall is maximized at a particular threshold of the friction angle at the wall–fill interface, which varies according to the geometric shape of the backfill and its internal friction angle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
KSCE Journal of Civil Engineering
KSCE Journal of Civil Engineering ENGINEERING, CIVIL-
CiteScore
4.00
自引率
9.10%
发文量
329
审稿时长
4.8 months
期刊介绍: The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields. The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信