椭圆函数和模函数的不可定义性结果

RAYMOND MCCULLOCH
{"title":"椭圆函数和模函数的不可定义性结果","authors":"RAYMOND MCCULLOCH","doi":"10.1017/jsl.2024.22","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\Omega $</span></span></img></span></span> be a complex lattice which does not have complex multiplication and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\wp =\\wp _\\Omega $</span></span></img></span></span> the Weierstrass <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\wp $</span></span></img></span></span>-function associated with it. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$D\\subseteq \\mathbb {C}$</span></span></img></span></span> be a disc and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$I\\subseteq \\mathbb {R}$</span></span></img></span></span> be a bounded closed interval such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$I\\cap \\Omega =\\varnothing $</span></span></img></span></span>. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$f:D\\rightarrow \\mathbb {C}$</span></span></img></span></span> be a function definable in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$(\\overline {\\mathbb {R}},\\wp |_I)$</span></span></img></span></span>. We show that if <span>f</span> is holomorphic on <span>D</span> then <span>f</span> is definable in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {\\mathbb {R}}$</span></span></img></span></span>. The proof of this result is an adaptation of the proof of Bianconi for the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {R}_{\\exp }$</span></span></img></span></span> case. We also give a characterization of lattices with complex multiplication in terms of definability and a nondefinability result for the modular <span>j</span>-function using similar methods.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NONDEFINABILITY RESULTS FOR ELLIPTIC AND MODULAR FUNCTIONS\",\"authors\":\"RAYMOND MCCULLOCH\",\"doi\":\"10.1017/jsl.2024.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Omega $</span></span></img></span></span> be a complex lattice which does not have complex multiplication and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\wp =\\\\wp _\\\\Omega $</span></span></img></span></span> the Weierstrass <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\wp $</span></span></img></span></span>-function associated with it. Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$D\\\\subseteq \\\\mathbb {C}$</span></span></img></span></span> be a disc and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$I\\\\subseteq \\\\mathbb {R}$</span></span></img></span></span> be a bounded closed interval such that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$I\\\\cap \\\\Omega =\\\\varnothing $</span></span></img></span></span>. Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f:D\\\\rightarrow \\\\mathbb {C}$</span></span></img></span></span> be a function definable in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(\\\\overline {\\\\mathbb {R}},\\\\wp |_I)$</span></span></img></span></span>. We show that if <span>f</span> is holomorphic on <span>D</span> then <span>f</span> is definable in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\overline {\\\\mathbb {R}}$</span></span></img></span></span>. The proof of this result is an adaptation of the proof of Bianconi for the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {R}_{\\\\exp }$</span></span></img></span></span> case. We also give a characterization of lattices with complex multiplication in terms of definability and a nondefinability result for the modular <span>j</span>-function using similar methods.</p>\",\"PeriodicalId\":501300,\"journal\":{\"name\":\"The Journal of Symbolic Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2024.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2024.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $Omega $ 是一个没有复乘法的复晶格,$\wp =\wp _\Omega $ 是与之相关的 Weierstrass $\wp $ 函数。让 $D\subseteq \mathbb {C}$ 是一个圆盘,而 $I\subseteq \mathbb {R}$ 是一个有界的封闭区间,使得 $I\cap \Omega =\varnothing $。让 $f:D\rightarrow \mathbb {C}$ 是一个在 $(\overline {\mathbb {R}},\wp |_I)$ 中可定义的函数。我们证明,如果 f 在 D 上是全态的,那么 f 在 $\overline {\mathbb {R}}$ 中是可定义的。这一结果的证明是对比安科尼针对 $\mathbb {R}_{\exp }$ 情况的证明的改编。我们还给出了复乘法网格的可定义性特征,并用类似的方法给出了模数 j 函数的不可定义性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NONDEFINABILITY RESULTS FOR ELLIPTIC AND MODULAR FUNCTIONS

Let $\Omega $ be a complex lattice which does not have complex multiplication and $\wp =\wp _\Omega $ the Weierstrass $\wp $-function associated with it. Let $D\subseteq \mathbb {C}$ be a disc and $I\subseteq \mathbb {R}$ be a bounded closed interval such that $I\cap \Omega =\varnothing $. Let $f:D\rightarrow \mathbb {C}$ be a function definable in $(\overline {\mathbb {R}},\wp |_I)$. We show that if f is holomorphic on D then f is definable in $\overline {\mathbb {R}}$. The proof of this result is an adaptation of the proof of Bianconi for the $\mathbb {R}_{\exp }$ case. We also give a characterization of lattices with complex multiplication in terms of definability and a nondefinability result for the modular j-function using similar methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信