XMOL:可解释的分子多性能优化

Aye Phyu Phyu Aung, Jay Chaudhary, Ji Wei Yoon, Senthilnath Jayavelu
{"title":"XMOL:可解释的分子多性能优化","authors":"Aye Phyu Phyu Aung, Jay Chaudhary, Ji Wei Yoon, Senthilnath Jayavelu","doi":"arxiv-2409.07786","DOIUrl":null,"url":null,"abstract":"Molecular optimization is a key challenge in drug discovery and material\nscience domain, involving the design of molecules with desired properties.\nExisting methods focus predominantly on single-property optimization,\nnecessitating repetitive runs to target multiple properties, which is\ninefficient and computationally expensive. Moreover, these methods often lack\ntransparency, making it difficult for researchers to understand and control the\noptimization process. To address these issues, we propose a novel framework,\nExplainable Multi-property Optimization of Molecules (XMOL), to optimize\nmultiple molecular properties simultaneously while incorporating\nexplainability. Our approach builds on state-of-the-art geometric diffusion\nmodels, extending them to multi-property optimization through the introduction\nof spectral normalization and enhanced molecular constraints for stabilized\ntraining. Additionally, we integrate interpretive and explainable techniques\nthroughout the optimization process. We evaluated XMOL on the real-world\nmolecular datasets i.e., QM9, demonstrating its effectiveness in both single\nproperty and multiple properties optimization while offering interpretable\nresults, paving the way for more efficient and reliable molecular design.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XMOL: Explainable Multi-property Optimization of Molecules\",\"authors\":\"Aye Phyu Phyu Aung, Jay Chaudhary, Ji Wei Yoon, Senthilnath Jayavelu\",\"doi\":\"arxiv-2409.07786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular optimization is a key challenge in drug discovery and material\\nscience domain, involving the design of molecules with desired properties.\\nExisting methods focus predominantly on single-property optimization,\\nnecessitating repetitive runs to target multiple properties, which is\\ninefficient and computationally expensive. Moreover, these methods often lack\\ntransparency, making it difficult for researchers to understand and control the\\noptimization process. To address these issues, we propose a novel framework,\\nExplainable Multi-property Optimization of Molecules (XMOL), to optimize\\nmultiple molecular properties simultaneously while incorporating\\nexplainability. Our approach builds on state-of-the-art geometric diffusion\\nmodels, extending them to multi-property optimization through the introduction\\nof spectral normalization and enhanced molecular constraints for stabilized\\ntraining. Additionally, we integrate interpretive and explainable techniques\\nthroughout the optimization process. We evaluated XMOL on the real-world\\nmolecular datasets i.e., QM9, demonstrating its effectiveness in both single\\nproperty and multiple properties optimization while offering interpretable\\nresults, paving the way for more efficient and reliable molecular design.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分子优化是药物发现和材料科学领域的一项关键挑战,涉及设计具有所需性质的分子。现有方法主要侧重于单一性质的优化,需要针对多种性质重复运行,效率低且计算成本高。此外,这些方法往往缺乏透明度,使研究人员难以理解和控制优化过程。为了解决这些问题,我们提出了一个新颖的框架--可解释的分子多特性优化(XMOL),在结合可解释性的同时优化多种分子特性。我们的方法以最先进的几何扩散模型为基础,通过引入光谱归一化和增强的稳定训练分子约束,将其扩展到多属性优化。此外,我们还在整个优化过程中整合了解释性和可解释性技术。我们在真实世界的分子数据集(如 QM9)上对 XMOL 进行了评估,证明了它在单属性和多属性优化中的有效性,同时提供了可解释的结果,为更高效、更可靠的分子设计铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
XMOL: Explainable Multi-property Optimization of Molecules
Molecular optimization is a key challenge in drug discovery and material science domain, involving the design of molecules with desired properties. Existing methods focus predominantly on single-property optimization, necessitating repetitive runs to target multiple properties, which is inefficient and computationally expensive. Moreover, these methods often lack transparency, making it difficult for researchers to understand and control the optimization process. To address these issues, we propose a novel framework, Explainable Multi-property Optimization of Molecules (XMOL), to optimize multiple molecular properties simultaneously while incorporating explainability. Our approach builds on state-of-the-art geometric diffusion models, extending them to multi-property optimization through the introduction of spectral normalization and enhanced molecular constraints for stabilized training. Additionally, we integrate interpretive and explainable techniques throughout the optimization process. We evaluated XMOL on the real-world molecular datasets i.e., QM9, demonstrating its effectiveness in both single property and multiple properties optimization while offering interpretable results, paving the way for more efficient and reliable molecular design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信