高阶逻辑编程的稳定模型语义学

Bart Bogaerts, Angelos Charalambidis, Giannos Chatziagapis, Babis Kostopoulos, Samuele Pollaci, Panos Rondogiannis
{"title":"高阶逻辑编程的稳定模型语义学","authors":"Bart Bogaerts, Angelos Charalambidis, Giannos Chatziagapis, Babis Kostopoulos, Samuele Pollaci, Panos Rondogiannis","doi":"arxiv-2408.10563","DOIUrl":null,"url":null,"abstract":"We propose a stable model semantics for higher-order logic programs. Our\nsemantics is developed using Approximation Fixpoint Theory (AFT), a powerful\nformalism that has successfully been used to give meaning to diverse\nnon-monotonic formalisms. The proposed semantics generalizes the classical\ntwo-valued stable model semantics of (Gelfond and Lifschitz 1988) as-well-as\nthe three-valued one of (Przymusinski 1990), retaining their desirable\nproperties. Due to the use of AFT, we also get for free alternative semantics\nfor higher-order logic programs, namely supported model, Kripke-Kleene, and\nwell-founded. Additionally, we define a broad class of stratified higher-order\nlogic programs and demonstrate that they have a unique two-valued higher-order\nstable model which coincides with the well-founded semantics of such programs.\nWe provide a number of examples in different application domains, which\ndemonstrate that higher-order logic programming under the stable model\nsemantics is a powerful and versatile formalism, which can potentially form the\nbasis of novel ASP systems.","PeriodicalId":501197,"journal":{"name":"arXiv - CS - Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Stable Model Semantics for Higher-Order Logic Programming\",\"authors\":\"Bart Bogaerts, Angelos Charalambidis, Giannos Chatziagapis, Babis Kostopoulos, Samuele Pollaci, Panos Rondogiannis\",\"doi\":\"arxiv-2408.10563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a stable model semantics for higher-order logic programs. Our\\nsemantics is developed using Approximation Fixpoint Theory (AFT), a powerful\\nformalism that has successfully been used to give meaning to diverse\\nnon-monotonic formalisms. The proposed semantics generalizes the classical\\ntwo-valued stable model semantics of (Gelfond and Lifschitz 1988) as-well-as\\nthe three-valued one of (Przymusinski 1990), retaining their desirable\\nproperties. Due to the use of AFT, we also get for free alternative semantics\\nfor higher-order logic programs, namely supported model, Kripke-Kleene, and\\nwell-founded. Additionally, we define a broad class of stratified higher-order\\nlogic programs and demonstrate that they have a unique two-valued higher-order\\nstable model which coincides with the well-founded semantics of such programs.\\nWe provide a number of examples in different application domains, which\\ndemonstrate that higher-order logic programming under the stable model\\nsemantics is a powerful and versatile formalism, which can potentially form the\\nbasis of novel ASP systems.\",\"PeriodicalId\":501197,\"journal\":{\"name\":\"arXiv - CS - Programming Languages\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种适用于高阶逻辑程序的稳定模型语义。我们的语义是利用近似定点理论(AFT)发展起来的,AFT 是一种强大的形式主义,已被成功地用于赋予各种非单调形式主义以意义。所提出的语义概括了(Gelfond 和 Lifschitz,1988 年)的经典两值稳定模型语义以及(Przymusinski,1990 年)的三值稳定模型语义,保留了它们的理想特性。由于使用了 AFT,我们还免费获得了高阶逻辑程序的替代语义,即支持模型、克里普克-克莱因和有根据。此外,我们还定义了一大类分层高阶逻辑程序,并证明它们有一个独特的两值高阶稳定模型,该模型与此类程序的有根据语义相吻合。我们提供了不同应用领域中的大量实例,证明稳定模型语义下的高阶逻辑编程是一种强大而多用途的形式主义,有可能成为新型 ASP 系统的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Stable Model Semantics for Higher-Order Logic Programming
We propose a stable model semantics for higher-order logic programs. Our semantics is developed using Approximation Fixpoint Theory (AFT), a powerful formalism that has successfully been used to give meaning to diverse non-monotonic formalisms. The proposed semantics generalizes the classical two-valued stable model semantics of (Gelfond and Lifschitz 1988) as-well-as the three-valued one of (Przymusinski 1990), retaining their desirable properties. Due to the use of AFT, we also get for free alternative semantics for higher-order logic programs, namely supported model, Kripke-Kleene, and well-founded. Additionally, we define a broad class of stratified higher-order logic programs and demonstrate that they have a unique two-valued higher-order stable model which coincides with the well-founded semantics of such programs. We provide a number of examples in different application domains, which demonstrate that higher-order logic programming under the stable model semantics is a powerful and versatile formalism, which can potentially form the basis of novel ASP systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信