上下文驱动的索引修剪:从数据质量的角度提高 RALMs 的精确度

Kexin Ma, Ruochun Jin, Xi Wang, Huan Chen, Jing Ren, Yuhua Tang
{"title":"上下文驱动的索引修剪:从数据质量的角度提高 RALMs 的精确度","authors":"Kexin Ma, Ruochun Jin, Xi Wang, Huan Chen, Jing Ren, Yuhua Tang","doi":"arxiv-2408.05524","DOIUrl":null,"url":null,"abstract":"Retrieval-Augmented Large Language Models (RALMs) have made significant\nstrides in enhancing the accuracy of generated responses.However, existing\nresearch often overlooks the data quality issues within retrieval results,\noften caused by inaccurate existing vector-distance-based retrieval methods.We\npropose to boost the precision of RALMs' answers from a data quality\nperspective through the Context-Driven Index Trimming (CDIT) framework, where\nContext Matching Dependencies (CMDs) are employed as logical data quality rules\nto capture and regulate the consistency between retrieved contexts.Based on the\nsemantic comprehension capabilities of Large Language Models (LLMs), CDIT can\neffectively identify and discard retrieval results that are inconsistent with\nthe query context and further modify indexes in the database, thereby improving\nanswer quality.Experiments demonstrate on challenging question-answering\ntasks.Also, the flexibility of CDIT is verified through its compatibility with\nvarious language models and indexing methods, which offers a promising approach\nto bolster RALMs' data quality and retrieval precision jointly.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context-Driven Index Trimming: A Data Quality Perspective to Enhancing Precision of RALMs\",\"authors\":\"Kexin Ma, Ruochun Jin, Xi Wang, Huan Chen, Jing Ren, Yuhua Tang\",\"doi\":\"arxiv-2408.05524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retrieval-Augmented Large Language Models (RALMs) have made significant\\nstrides in enhancing the accuracy of generated responses.However, existing\\nresearch often overlooks the data quality issues within retrieval results,\\noften caused by inaccurate existing vector-distance-based retrieval methods.We\\npropose to boost the precision of RALMs' answers from a data quality\\nperspective through the Context-Driven Index Trimming (CDIT) framework, where\\nContext Matching Dependencies (CMDs) are employed as logical data quality rules\\nto capture and regulate the consistency between retrieved contexts.Based on the\\nsemantic comprehension capabilities of Large Language Models (LLMs), CDIT can\\neffectively identify and discard retrieval results that are inconsistent with\\nthe query context and further modify indexes in the database, thereby improving\\nanswer quality.Experiments demonstrate on challenging question-answering\\ntasks.Also, the flexibility of CDIT is verified through its compatibility with\\nvarious language models and indexing methods, which offers a promising approach\\nto bolster RALMs' data quality and retrieval precision jointly.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

检索增强大语言模型(RALMs)在提高生成回答的准确性方面取得了长足的进步。然而,现有的研究往往忽视了检索结果中的数据质量问题,而这些问题往往是由现有的基于向量距离的检索方法不准确造成的。我们建议通过上下文驱动的索引修剪(CDIT)框架,从数据质量的角度提高 RALMs 答案的精确度,其中上下文匹配依赖(CMD)被用作逻辑数据质量规则,以捕捉和调节检索上下文之间的一致性。基于大语言模型(LLMs)的语义理解能力,CDIT可以有效地识别和丢弃与查询上下文不一致的检索结果,并进一步修改数据库中的索引,从而提高答案质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-Driven Index Trimming: A Data Quality Perspective to Enhancing Precision of RALMs
Retrieval-Augmented Large Language Models (RALMs) have made significant strides in enhancing the accuracy of generated responses.However, existing research often overlooks the data quality issues within retrieval results, often caused by inaccurate existing vector-distance-based retrieval methods.We propose to boost the precision of RALMs' answers from a data quality perspective through the Context-Driven Index Trimming (CDIT) framework, where Context Matching Dependencies (CMDs) are employed as logical data quality rules to capture and regulate the consistency between retrieved contexts.Based on the semantic comprehension capabilities of Large Language Models (LLMs), CDIT can effectively identify and discard retrieval results that are inconsistent with the query context and further modify indexes in the database, thereby improving answer quality.Experiments demonstrate on challenging question-answering tasks.Also, the flexibility of CDIT is verified through its compatibility with various language models and indexing methods, which offers a promising approach to bolster RALMs' data quality and retrieval precision jointly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信