工作温度下的 NMR,用于 PET 降解酶的共振分配

Valeria Gabrielli, Jelena Grga, Sabine Gavalda, Laura Perrot, Emmanuelle Boll, Guy Lippens, Cyril Charlier, Guy Lippens
{"title":"工作温度下的 NMR,用于 PET 降解酶的共振分配","authors":"Valeria Gabrielli, Jelena Grga, Sabine Gavalda, Laura Perrot, Emmanuelle Boll, Guy Lippens, Cyril Charlier, Guy Lippens","doi":"10.1101/2024.09.10.612188","DOIUrl":null,"url":null,"abstract":"PETases are enzymes that can break down the PET polymer in its constituent building blocks, and thereby recycle starting material for new high-quality plastics. NMR spectroscopy can help in the understanding and ultimately improvement of these PETases, but is always confronted with the lengthy step of acquisition and interpretation of triple resonance spectra for the spectral assignment. Here, we explore whether this step can be made more efficient by recording the spectra directly at high temperature, which also corresponds to more realistic working conditions for the enzyme. Taking the inactive variant of LCCICCG in which the Serine 165 has been replaced by an Alanine (LCCICCG-S165A) as an example, we evaluate spectral quality at 30C and 50C, and find that the latter condition greatly improves the Signal-to-Noise (S/N) ratio of the different spectra. As a result, we present an exhaustive backbone and side-chain assignment of LCCICCG-S165A based on a minimal set of triple resonance spectra acquired at 50C, that can act as a basis for future work on bio-structural studies on this PETase.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NMR at operational temperature for resonance assignments of a PET degrading enzyme\",\"authors\":\"Valeria Gabrielli, Jelena Grga, Sabine Gavalda, Laura Perrot, Emmanuelle Boll, Guy Lippens, Cyril Charlier, Guy Lippens\",\"doi\":\"10.1101/2024.09.10.612188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PETases are enzymes that can break down the PET polymer in its constituent building blocks, and thereby recycle starting material for new high-quality plastics. NMR spectroscopy can help in the understanding and ultimately improvement of these PETases, but is always confronted with the lengthy step of acquisition and interpretation of triple resonance spectra for the spectral assignment. Here, we explore whether this step can be made more efficient by recording the spectra directly at high temperature, which also corresponds to more realistic working conditions for the enzyme. Taking the inactive variant of LCCICCG in which the Serine 165 has been replaced by an Alanine (LCCICCG-S165A) as an example, we evaluate spectral quality at 30C and 50C, and find that the latter condition greatly improves the Signal-to-Noise (S/N) ratio of the different spectra. As a result, we present an exhaustive backbone and side-chain assignment of LCCICCG-S165A based on a minimal set of triple resonance spectra acquired at 50C, that can act as a basis for future work on bio-structural studies on this PETase.\",\"PeriodicalId\":501048,\"journal\":{\"name\":\"bioRxiv - Biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.10.612188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.10.612188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

PET 酶是一种能将 PET 聚合物分解为其组成构件的酶,从而循环利用起始材料制造新的优质塑料。核磁共振光谱有助于了解并最终改进这些 PET 酶,但始终面临着获取和解释三重共振谱以进行光谱分配的漫长步骤。在此,我们探讨了是否可以通过在高温下直接记录光谱来提高这一步骤的效率,因为高温也符合酶的更实际工作条件。以丝氨酸 165 被丙氨酸取代的 LCCICCG 非活性变体(LCCICCG-S165A)为例,我们分别在 30C 和 50C 温度下对光谱质量进行了评估,结果发现后者大大提高了不同光谱的信噪比(S/N)。因此,我们根据在 50C 温度下获得的一组最小的三重共振谱,对 LCCICCG-S165A 进行了详尽的骨架和侧链分配,为今后对这种 PET 酶进行生物结构研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NMR at operational temperature for resonance assignments of a PET degrading enzyme
PETases are enzymes that can break down the PET polymer in its constituent building blocks, and thereby recycle starting material for new high-quality plastics. NMR spectroscopy can help in the understanding and ultimately improvement of these PETases, but is always confronted with the lengthy step of acquisition and interpretation of triple resonance spectra for the spectral assignment. Here, we explore whether this step can be made more efficient by recording the spectra directly at high temperature, which also corresponds to more realistic working conditions for the enzyme. Taking the inactive variant of LCCICCG in which the Serine 165 has been replaced by an Alanine (LCCICCG-S165A) as an example, we evaluate spectral quality at 30C and 50C, and find that the latter condition greatly improves the Signal-to-Noise (S/N) ratio of the different spectra. As a result, we present an exhaustive backbone and side-chain assignment of LCCICCG-S165A based on a minimal set of triple resonance spectra acquired at 50C, that can act as a basis for future work on bio-structural studies on this PETase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信