利用嵌套扫描对外部存储器中的 BDD 进行多变量量化(扩展论文)

Steffan Christ Sølvsten, Jaco van de Pol
{"title":"利用嵌套扫描对外部存储器中的 BDD 进行多变量量化(扩展论文)","authors":"Steffan Christ Sølvsten, Jaco van de Pol","doi":"arxiv-2408.14216","DOIUrl":null,"url":null,"abstract":"Previous research on the Adiar BDD package has been successful at designing\nalgorithms capable of handling large Binary Decision Diagrams (BDDs) stored in\nexternal memory. To do so, it uses consecutive sweeps through the BDDs to\nresolve computations. Yet, this approach has kept algorithms for multi-variable\nquantification, the relational product, and variable reordering out of its\nscope. In this work, we address this by introducing the nested sweeping framework.\nHere, multiple concurrent sweeps pass information between eachother to compute\nthe result. We have implemented the framework in Adiar and used it to create a\nnew external memory multi-variable quantification algorithm. Compared to\nconventional depth-first implementations, Adiar with nested sweeping is able to\nsolve more instances of our benchmarks and/or solve them faster.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-variable Quantification of BDDs in External Memory using Nested Sweeping (Extended Paper)\",\"authors\":\"Steffan Christ Sølvsten, Jaco van de Pol\",\"doi\":\"arxiv-2408.14216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous research on the Adiar BDD package has been successful at designing\\nalgorithms capable of handling large Binary Decision Diagrams (BDDs) stored in\\nexternal memory. To do so, it uses consecutive sweeps through the BDDs to\\nresolve computations. Yet, this approach has kept algorithms for multi-variable\\nquantification, the relational product, and variable reordering out of its\\nscope. In this work, we address this by introducing the nested sweeping framework.\\nHere, multiple concurrent sweeps pass information between eachother to compute\\nthe result. We have implemented the framework in Adiar and used it to create a\\nnew external memory multi-variable quantification algorithm. Compared to\\nconventional depth-first implementations, Adiar with nested sweeping is able to\\nsolve more instances of our benchmarks and/or solve them faster.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以前对 Adiar BDD 软件包的研究成功地设计出了能够处理存储在外部内存中的大型二进制判定图 (BDD) 的算法。为此,它使用连续扫描 BDD 来解决计算问题。然而,这种方法将多变量量化、关系积和变量重排序的算法排除在外。在这项工作中,我们通过引入嵌套清扫框架来解决这个问题。在这里,多个并发清扫会相互传递信息以计算结果。我们在 Adiar 中实现了该框架,并用它创建了一种新的外部内存多变量量化算法。与传统的深度优先算法相比,嵌套扫频的 Adiar 能够解决更多的基准实例和/或更快地解决它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-variable Quantification of BDDs in External Memory using Nested Sweeping (Extended Paper)
Previous research on the Adiar BDD package has been successful at designing algorithms capable of handling large Binary Decision Diagrams (BDDs) stored in external memory. To do so, it uses consecutive sweeps through the BDDs to resolve computations. Yet, this approach has kept algorithms for multi-variable quantification, the relational product, and variable reordering out of its scope. In this work, we address this by introducing the nested sweeping framework. Here, multiple concurrent sweeps pass information between eachother to compute the result. We have implemented the framework in Adiar and used it to create a new external memory multi-variable quantification algorithm. Compared to conventional depth-first implementations, Adiar with nested sweeping is able to solve more instances of our benchmarks and/or solve them faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信