GNN:基于图神经网络和大型语言模型的数据发现

Thomas Hoang
{"title":"GNN:基于图神经网络和大型语言模型的数据发现","authors":"Thomas Hoang","doi":"arxiv-2408.13609","DOIUrl":null,"url":null,"abstract":"Our algorithm GNN: Graph Neural Network and Large Language Model Based for\nData Discovery inherits the benefits of \\cite{hoang2024plod} (PLOD: Predictive\nLearning Optimal Data Discovery), \\cite{Hoang2024BODBO} (BOD: Blindly Optimal\nData Discovery) in terms of overcoming the challenges of having to predefine\nutility function and the human input for attribute ranking, which helps prevent\nthe time-consuming loop process. In addition to these previous works, our\nalgorithm GNN leverages the advantages of graph neural networks and large\nlanguage models to understand text type values that cannot be understood by\nPLOD and MOD, thus making the task of predicting outcomes more reliable. GNN\ncould be seen as an extension of PLOD in terms of understanding the text type\nvalue and the user's preferences based on not only numerical values but also\ntext values, making the promise of data science and analytics purposes.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GNN: Graph Neural Network and Large Language Model Based for Data Discovery\",\"authors\":\"Thomas Hoang\",\"doi\":\"arxiv-2408.13609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our algorithm GNN: Graph Neural Network and Large Language Model Based for\\nData Discovery inherits the benefits of \\\\cite{hoang2024plod} (PLOD: Predictive\\nLearning Optimal Data Discovery), \\\\cite{Hoang2024BODBO} (BOD: Blindly Optimal\\nData Discovery) in terms of overcoming the challenges of having to predefine\\nutility function and the human input for attribute ranking, which helps prevent\\nthe time-consuming loop process. In addition to these previous works, our\\nalgorithm GNN leverages the advantages of graph neural networks and large\\nlanguage models to understand text type values that cannot be understood by\\nPLOD and MOD, thus making the task of predicting outcomes more reliable. GNN\\ncould be seen as an extension of PLOD in terms of understanding the text type\\nvalue and the user's preferences based on not only numerical values but also\\ntext values, making the promise of data science and analytics purposes.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的算法 GNN:基于图神经网络和大语言模型的数据发现算法(GNN:Graph Neural Network and Large Language Model Based forData Discovery)继承了PLOD(PredictiveLearning Optimal Data Discovery)、BOD(Blindly OptimalData Discovery)的优点,克服了属性排序必须预先定义效用函数和人工输入的难题,从而避免了耗时的循环过程。除了这些前人的研究成果,我们的算法 GNN 充分利用了图神经网络和大型语言模型的优势,能够理解PLOD 和 MOD 无法理解的文本类型值,从而使预测结果的任务更加可靠。GNN可以看作是PLOD的延伸,它不仅能根据数值,还能根据文本值理解文本类型值和用户的偏好,从而实现数据科学和分析的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GNN: Graph Neural Network and Large Language Model Based for Data Discovery
Our algorithm GNN: Graph Neural Network and Large Language Model Based for Data Discovery inherits the benefits of \cite{hoang2024plod} (PLOD: Predictive Learning Optimal Data Discovery), \cite{Hoang2024BODBO} (BOD: Blindly Optimal Data Discovery) in terms of overcoming the challenges of having to predefine utility function and the human input for attribute ranking, which helps prevent the time-consuming loop process. In addition to these previous works, our algorithm GNN leverages the advantages of graph neural networks and large language models to understand text type values that cannot be understood by PLOD and MOD, thus making the task of predicting outcomes more reliable. GNN could be seen as an extension of PLOD in terms of understanding the text type value and the user's preferences based on not only numerical values but also text values, making the promise of data science and analytics purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信