Iman Motie, S. Mahmoudi, Mahdi Sadegh, Jafar Khodagholizadeh, Alain Blanchard, She-Sheng Xue
{"title":"介子反常磁矩和右手不育中微子","authors":"Iman Motie, S. Mahmoudi, Mahdi Sadegh, Jafar Khodagholizadeh, Alain Blanchard, She-Sheng Xue","doi":"arxiv-2409.07184","DOIUrl":null,"url":null,"abstract":"The muon's magnetic moment is a fundamental quantity in particle physics and\nthe deviation of its value from quantum electrodynamics (QED), motivates\nresearch beyond the standard models (SM). In this study, we utilize the\neffective coupling of right-handed sterile neutrinos with SM gauge bosons to\ncalculate the muon anomalous magnetic moment ($\\boldsymbol{\\mu}$AMM) at\none-loop level. The contribution of the sterile neutrino interactions on the\n$\\boldsymbol{\\mu}$AMM is calculated by considering the standard and\nnon-standard neutrino interactions. Our results show that the standard sterile\nneutrino interactions give a negligible contribution to $\\Delta\na_{\\boldsymbol{\\mu}}$ while the non-standard neutrino interactions can play a\nsignificant role in explaining the muon $(g-2)$ anomaly. In the context of the\nnon-standard neutrino interaction, our calculation shows that a Dirac mass\nscale $M_D$ around $100\\,\\text{GeV}$ could explain the muon anomaly if the\nright handed sterile neutrino's coupling with SM particles is about\n$\\mathcal{G}_R\\approx 10^{-3}$. We have also plotted the allowed region of the\nmodel parameters that satisfy the experimental data on $\\Delta\na_{{\\boldsymbol{\\mu}}}^{SN}$ and discuss the percentage of the\n${\\boldsymbol{\\mu}}$ anomaly compensation in terms of the coupling constant\n$\\mathcal{G}_R$.","PeriodicalId":501067,"journal":{"name":"arXiv - PHYS - High Energy Physics - Phenomenology","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Muon anomalous magnetic moment and Right handed sterile neutrino\",\"authors\":\"Iman Motie, S. Mahmoudi, Mahdi Sadegh, Jafar Khodagholizadeh, Alain Blanchard, She-Sheng Xue\",\"doi\":\"arxiv-2409.07184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The muon's magnetic moment is a fundamental quantity in particle physics and\\nthe deviation of its value from quantum electrodynamics (QED), motivates\\nresearch beyond the standard models (SM). In this study, we utilize the\\neffective coupling of right-handed sterile neutrinos with SM gauge bosons to\\ncalculate the muon anomalous magnetic moment ($\\\\boldsymbol{\\\\mu}$AMM) at\\none-loop level. The contribution of the sterile neutrino interactions on the\\n$\\\\boldsymbol{\\\\mu}$AMM is calculated by considering the standard and\\nnon-standard neutrino interactions. Our results show that the standard sterile\\nneutrino interactions give a negligible contribution to $\\\\Delta\\na_{\\\\boldsymbol{\\\\mu}}$ while the non-standard neutrino interactions can play a\\nsignificant role in explaining the muon $(g-2)$ anomaly. In the context of the\\nnon-standard neutrino interaction, our calculation shows that a Dirac mass\\nscale $M_D$ around $100\\\\,\\\\text{GeV}$ could explain the muon anomaly if the\\nright handed sterile neutrino's coupling with SM particles is about\\n$\\\\mathcal{G}_R\\\\approx 10^{-3}$. We have also plotted the allowed region of the\\nmodel parameters that satisfy the experimental data on $\\\\Delta\\na_{{\\\\boldsymbol{\\\\mu}}}^{SN}$ and discuss the percentage of the\\n${\\\\boldsymbol{\\\\mu}}$ anomaly compensation in terms of the coupling constant\\n$\\\\mathcal{G}_R$.\",\"PeriodicalId\":501067,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Phenomenology\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Phenomenology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Phenomenology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Muon anomalous magnetic moment and Right handed sterile neutrino
The muon's magnetic moment is a fundamental quantity in particle physics and
the deviation of its value from quantum electrodynamics (QED), motivates
research beyond the standard models (SM). In this study, we utilize the
effective coupling of right-handed sterile neutrinos with SM gauge bosons to
calculate the muon anomalous magnetic moment ($\boldsymbol{\mu}$AMM) at
one-loop level. The contribution of the sterile neutrino interactions on the
$\boldsymbol{\mu}$AMM is calculated by considering the standard and
non-standard neutrino interactions. Our results show that the standard sterile
neutrino interactions give a negligible contribution to $\Delta
a_{\boldsymbol{\mu}}$ while the non-standard neutrino interactions can play a
significant role in explaining the muon $(g-2)$ anomaly. In the context of the
non-standard neutrino interaction, our calculation shows that a Dirac mass
scale $M_D$ around $100\,\text{GeV}$ could explain the muon anomaly if the
right handed sterile neutrino's coupling with SM particles is about
$\mathcal{G}_R\approx 10^{-3}$. We have also plotted the allowed region of the
model parameters that satisfy the experimental data on $\Delta
a_{{\boldsymbol{\mu}}}^{SN}$ and discuss the percentage of the
${\boldsymbol{\mu}}$ anomaly compensation in terms of the coupling constant
$\mathcal{G}_R$.