{"title":"子梯度外梯度算法的扩展,用于求解无单调性的变分不等式","authors":"Jiaxin Chen, Zunjie Huang, Yongle Zhang","doi":"10.1007/s12190-024-02219-9","DOIUrl":null,"url":null,"abstract":"<p>Two improved subgradient extragradient algorithms are proposed for solving nonmonotone variational inequalities under the nonempty assumption of the solution set of the dual variational inequalities. First, when the mapping is Lipschitz continuous, we propose an improved subgradient extragradient algorithm with self-adaptive step-size (ISEGS for short). In ISEGS, the next iteration point is obtained by projecting sequentially the current iteration point onto two different half-spaces, and only one projection onto the feasible set is required in the process of constructing the half-spaces per iteration. The self-adaptive technique allows us to determine the step-size without using the Lipschitz constant. Second, we extend our algorithm into the case where the mapping is merely continuous. The Armijo line search approach is used to handle the non-Lipschitz continuity of the mapping. The global convergence of both algorithms is established without monotonicity assumption of the mapping. The computational complexity of the two proposed algorithms is analyzed. Some numerical examples are given to show the efficiency of the new algorithms.\n</p>","PeriodicalId":15034,"journal":{"name":"Journal of Applied Mathematics and Computing","volume":"18 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extension of the subgradient extragradient algorithm for solving variational inequalities without monotonicity\",\"authors\":\"Jiaxin Chen, Zunjie Huang, Yongle Zhang\",\"doi\":\"10.1007/s12190-024-02219-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two improved subgradient extragradient algorithms are proposed for solving nonmonotone variational inequalities under the nonempty assumption of the solution set of the dual variational inequalities. First, when the mapping is Lipschitz continuous, we propose an improved subgradient extragradient algorithm with self-adaptive step-size (ISEGS for short). In ISEGS, the next iteration point is obtained by projecting sequentially the current iteration point onto two different half-spaces, and only one projection onto the feasible set is required in the process of constructing the half-spaces per iteration. The self-adaptive technique allows us to determine the step-size without using the Lipschitz constant. Second, we extend our algorithm into the case where the mapping is merely continuous. The Armijo line search approach is used to handle the non-Lipschitz continuity of the mapping. The global convergence of both algorithms is established without monotonicity assumption of the mapping. The computational complexity of the two proposed algorithms is analyzed. Some numerical examples are given to show the efficiency of the new algorithms.\\n</p>\",\"PeriodicalId\":15034,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computing\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12190-024-02219-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02219-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Extension of the subgradient extragradient algorithm for solving variational inequalities without monotonicity
Two improved subgradient extragradient algorithms are proposed for solving nonmonotone variational inequalities under the nonempty assumption of the solution set of the dual variational inequalities. First, when the mapping is Lipschitz continuous, we propose an improved subgradient extragradient algorithm with self-adaptive step-size (ISEGS for short). In ISEGS, the next iteration point is obtained by projecting sequentially the current iteration point onto two different half-spaces, and only one projection onto the feasible set is required in the process of constructing the half-spaces per iteration. The self-adaptive technique allows us to determine the step-size without using the Lipschitz constant. Second, we extend our algorithm into the case where the mapping is merely continuous. The Armijo line search approach is used to handle the non-Lipschitz continuity of the mapping. The global convergence of both algorithms is established without monotonicity assumption of the mapping. The computational complexity of the two proposed algorithms is analyzed. Some numerical examples are given to show the efficiency of the new algorithms.
期刊介绍:
JAMC is a broad based journal covering all branches of computational or applied mathematics with special encouragement to researchers in theoretical computer science and mathematical computing. Major areas, such as numerical analysis, discrete optimization, linear and nonlinear programming, theory of computation, control theory, theory of algorithms, computational logic, applied combinatorics, coding theory, cryptograhics, fuzzy theory with applications, differential equations with applications are all included. A large variety of scientific problems also necessarily involve Algebra, Analysis, Geometry, Probability and Statistics and so on. The journal welcomes research papers in all branches of mathematics which have some bearing on the application to scientific problems, including papers in the areas of Actuarial Science, Mathematical Biology, Mathematical Economics and Finance.