克拉默-万尼尔对偶性和图特多项式

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
A. A. Kazakov
{"title":"克拉默-万尼尔对偶性和图特多项式","authors":"A. A. Kazakov","doi":"10.1134/S0040577924080051","DOIUrl":null,"url":null,"abstract":"<p> We study applications of the connection between the partition functions of the Potts models and Tutte polynomials: it is demonstrated how the Kramers–Wannier duality can be derived from the Tutte duality. Using the “contraction–elimination” relation and the Biggs formalism, we derive the high-temperature expansion and discuss possible methods for generalizing the Kramers–Wannier duality to models on nonplanar graphs. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kramers–Wannier duality and Tutte polynomials\",\"authors\":\"A. A. Kazakov\",\"doi\":\"10.1134/S0040577924080051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study applications of the connection between the partition functions of the Potts models and Tutte polynomials: it is demonstrated how the Kramers–Wannier duality can be derived from the Tutte duality. Using the “contraction–elimination” relation and the Biggs formalism, we derive the high-temperature expansion and discuss possible methods for generalizing the Kramers–Wannier duality to models on nonplanar graphs. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924080051\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924080051","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了波茨模型的分割函数与图特多项式之间联系的应用:证明了如何从图特对偶性推导出克拉默-万尼尔对偶性。利用 "收缩-消除 "关系和比格斯形式主义,我们推导了高温展开,并讨论了将克拉默-万尼尔对偶性推广到非平面图上模型的可能方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Kramers–Wannier duality and Tutte polynomials

Kramers–Wannier duality and Tutte polynomials

We study applications of the connection between the partition functions of the Potts models and Tutte polynomials: it is demonstrated how the Kramers–Wannier duality can be derived from the Tutte duality. Using the “contraction–elimination” relation and the Biggs formalism, we derive the high-temperature expansion and discuss possible methods for generalizing the Kramers–Wannier duality to models on nonplanar graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信