{"title":"纤维化和胶原蛋白相关疾病中的 N6-甲基腺苷 (m6A) RNA 修饰","authors":"Man Tan, Siyi Liu, Lubin Liu","doi":"10.1186/s13148-024-01736-5","DOIUrl":null,"url":null,"abstract":"Fibrosis is an abnormal tissue healing process characterized by the excessive accumulation of ECM components, such as COL I and COL III, in response to tissue injury or chronic inflammation. Recent advances in epitranscriptomics have underscored the importance of m6A modification in fibrosis. m6A, the most prevalent modification in eukaryotic RNA, is catalyzed by methyltransferases (e.g., METTL3), removed by demethylases (e.g., FTO), and recognized by reader proteins (e.g., YTHDF1/2). These modifications are crucial in regulating collagen metabolism and associated diseases. Understanding the role of m6A modification in fibrosis and other collagen-related conditions holds promise for developing targeted therapies. This review highlights the latest progress in this area.","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"20 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N6-methyladenosine (m6A) RNA modification in fibrosis and collagen-related diseases\",\"authors\":\"Man Tan, Siyi Liu, Lubin Liu\",\"doi\":\"10.1186/s13148-024-01736-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fibrosis is an abnormal tissue healing process characterized by the excessive accumulation of ECM components, such as COL I and COL III, in response to tissue injury or chronic inflammation. Recent advances in epitranscriptomics have underscored the importance of m6A modification in fibrosis. m6A, the most prevalent modification in eukaryotic RNA, is catalyzed by methyltransferases (e.g., METTL3), removed by demethylases (e.g., FTO), and recognized by reader proteins (e.g., YTHDF1/2). These modifications are crucial in regulating collagen metabolism and associated diseases. Understanding the role of m6A modification in fibrosis and other collagen-related conditions holds promise for developing targeted therapies. This review highlights the latest progress in this area.\",\"PeriodicalId\":10366,\"journal\":{\"name\":\"Clinical Epigenetics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Epigenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13148-024-01736-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epigenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13148-024-01736-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
纤维化是一种异常的组织愈合过程,其特点是组织损伤或慢性炎症时 ECM 成分(如 COL I 和 COL III)的过度积累。m6A 是真核 RNA 中最常见的修饰,由甲氧基转移酶(如 METTL3)催化,由去甲基化酶(如 FTO)去除,并由阅读蛋白(如 YTHDF1/2)识别。这些修饰在调节胶原代谢和相关疾病方面至关重要。了解 m6A 修饰在纤维化和其他胶原蛋白相关疾病中的作用为开发靶向疗法带来了希望。本综述重点介绍了这一领域的最新进展。
N6-methyladenosine (m6A) RNA modification in fibrosis and collagen-related diseases
Fibrosis is an abnormal tissue healing process characterized by the excessive accumulation of ECM components, such as COL I and COL III, in response to tissue injury or chronic inflammation. Recent advances in epitranscriptomics have underscored the importance of m6A modification in fibrosis. m6A, the most prevalent modification in eukaryotic RNA, is catalyzed by methyltransferases (e.g., METTL3), removed by demethylases (e.g., FTO), and recognized by reader proteins (e.g., YTHDF1/2). These modifications are crucial in regulating collagen metabolism and associated diseases. Understanding the role of m6A modification in fibrosis and other collagen-related conditions holds promise for developing targeted therapies. This review highlights the latest progress in this area.
期刊介绍:
Clinical Epigenetics, the official journal of the Clinical Epigenetics Society, is an open access, peer-reviewed journal that encompasses all aspects of epigenetic principles and mechanisms in relation to human disease, diagnosis and therapy. Clinical trials and research in disease model organisms are particularly welcome.