{"title":"打破数据壁垒:通过新的机器学习框架推进高熵合金的相位预测","authors":"Amitava Choudhury, Sandeep Kumar","doi":"10.1080/00084433.2024.2395674","DOIUrl":null,"url":null,"abstract":"High entropy alloys (HEAs) represent a promising ADVANCEMENT in the context of Industry 4.0, embodying the principles of interconnectedness, automation and real-time data. The formation of phases i...","PeriodicalId":9452,"journal":{"name":"Canadian Metallurgical Quarterly","volume":"13 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking data barriers: advancing phase prediction in high entropy alloys through a new machine learning framework\",\"authors\":\"Amitava Choudhury, Sandeep Kumar\",\"doi\":\"10.1080/00084433.2024.2395674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High entropy alloys (HEAs) represent a promising ADVANCEMENT in the context of Industry 4.0, embodying the principles of interconnectedness, automation and real-time data. The formation of phases i...\",\"PeriodicalId\":9452,\"journal\":{\"name\":\"Canadian Metallurgical Quarterly\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Metallurgical Quarterly\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/00084433.2024.2395674\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Metallurgical Quarterly","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00084433.2024.2395674","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Breaking data barriers: advancing phase prediction in high entropy alloys through a new machine learning framework
High entropy alloys (HEAs) represent a promising ADVANCEMENT in the context of Industry 4.0, embodying the principles of interconnectedness, automation and real-time data. The formation of phases i...
期刊介绍:
Canadian Metallurgical Quarterly publishes original contributions on all aspects of metallurgy and materials science, including mineral processing, hydrometallurgy, pyrometallurgy, materials processing, physical metallurgy and the service behaviour of materials. An invaluable resource for international researchers and professionals engaged in interdisciplinary research in metallurgy and materials science.