论N$体问题的最小扩展解的存在性

IF 2.6 1区 数学 Q1 MATHEMATICS
Davide Polimeni, Susanna Terracini
{"title":"论N$体问题的最小扩展解的存在性","authors":"Davide Polimeni, Susanna Terracini","doi":"10.1007/s00222-024-01289-7","DOIUrl":null,"url":null,"abstract":"<p>We deal, for the classical <span>\\(N\\)</span>-body problem, with the existence of action minimizing half entire expansive solutions with prescribed asymptotic direction and initial configuration of the bodies. We tackle the cases of hyperbolic, hyperbolic-parabolic and parabolic arcs in a unified manner. Our approach is based on the minimization of a renormalized Lagrangian action on a suitable functional space. With this new strategy, we are able to confirm the already-known results of the existence of both hyperbolic and parabolic solutions, and we prove for the first time the existence of hyperbolic-parabolic solutions for any prescribed asymptotic expansion in a suitable class. Associated with each element of this class we find a viscosity solution of the Hamilton-Jacobi equation as a linear correction of the value function. Besides, we also manage to give a precise description of the growth of parabolic and hyperbolic-parabolic solutions.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"13 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence of minimal expansive solutions to the $N$ -body problem\",\"authors\":\"Davide Polimeni, Susanna Terracini\",\"doi\":\"10.1007/s00222-024-01289-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We deal, for the classical <span>\\\\(N\\\\)</span>-body problem, with the existence of action minimizing half entire expansive solutions with prescribed asymptotic direction and initial configuration of the bodies. We tackle the cases of hyperbolic, hyperbolic-parabolic and parabolic arcs in a unified manner. Our approach is based on the minimization of a renormalized Lagrangian action on a suitable functional space. With this new strategy, we are able to confirm the already-known results of the existence of both hyperbolic and parabolic solutions, and we prove for the first time the existence of hyperbolic-parabolic solutions for any prescribed asymptotic expansion in a suitable class. Associated with each element of this class we find a viscosity solution of the Hamilton-Jacobi equation as a linear correction of the value function. Besides, we also manage to give a precise description of the growth of parabolic and hyperbolic-parabolic solutions.</p>\",\"PeriodicalId\":14429,\"journal\":{\"name\":\"Inventiones mathematicae\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventiones mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-024-01289-7\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01289-7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于经典的(N)体问题,我们讨论了在规定的渐近方向和体的初始配置下,是否存在作用最小化的半全展开解。我们以统一的方式处理了双曲、双曲-抛物和抛物弧的情况。我们的方法基于对合适函数空间的重规范化拉格朗日作用的最小化。利用这种新策略,我们能够证实双曲和抛物线解存在的已知结果,并首次证明了在一个合适的类中,任何规定渐近展开的双曲抛物线解的存在性。与该类中的每个元素相关联,我们找到了汉密尔顿-雅可比方程的粘性解,作为值函数的线性修正。此外,我们还设法精确描述了抛物线和双曲抛物线解的增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the existence of minimal expansive solutions to the $N$ -body problem

On the existence of minimal expansive solutions to the $N$ -body problem

We deal, for the classical \(N\)-body problem, with the existence of action minimizing half entire expansive solutions with prescribed asymptotic direction and initial configuration of the bodies. We tackle the cases of hyperbolic, hyperbolic-parabolic and parabolic arcs in a unified manner. Our approach is based on the minimization of a renormalized Lagrangian action on a suitable functional space. With this new strategy, we are able to confirm the already-known results of the existence of both hyperbolic and parabolic solutions, and we prove for the first time the existence of hyperbolic-parabolic solutions for any prescribed asymptotic expansion in a suitable class. Associated with each element of this class we find a viscosity solution of the Hamilton-Jacobi equation as a linear correction of the value function. Besides, we also manage to give a precise description of the growth of parabolic and hyperbolic-parabolic solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信