霍曼德型振荡积分算子的二分法

IF 2.6 1区 数学 Q1 MATHEMATICS
Shaoming Guo, Hong Wang, Ruixiang Zhang
{"title":"霍曼德型振荡积分算子的二分法","authors":"Shaoming Guo, Hong Wang, Ruixiang Zhang","doi":"10.1007/s00222-024-01288-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we first generalize the work of Bourgain (Geom. Funct. Anal. 1(4):321–374, 1991) and state a curvature condition for Hörmander-type oscillatory integral operators, which we call Bourgain’s condition. This condition is notably satisfied by the phase functions for the Fourier restriction problem and the Bochner-Riesz problem. We conjecture that for Hörmander-type oscillatory integral operators satisfying Bourgain’s condition, they satisfy the same <span>\\(L^{p}\\)</span> bounds as in the Fourier Restriction Conjecture. To support our conjecture, we show that whenever Bourgain’s condition fails, then the <span>\\(L^{\\infty } \\to L^{q}\\)</span> boundedness always fails for some <span>\\(q= q(n) &gt; \\frac{2n}{n-1}\\)</span>, extending Bourgain’s three-dimensional result (Geom. Funct. Anal. 1(4):321–374, 1991). On the other hand, if Bourgain’s condition holds, then we prove <span>\\(L^{p}\\)</span> bounds for Hörmander-type oscillatory integral operators for a range of <span>\\(p\\)</span> that extends the currently best-known range for the Fourier restriction conjecture in high dimensions, given by Hickman and Zahl (A note on Fourier restriction and nested polynomial wolff axioms, 2020, arXiv:2010.02251). This gives new progress on the Fourier restriction problem, the Bochner-Riesz problem on <span>\\(\\mathbb{R}^{n}\\)</span>, the Bochner-Riesz problem on spheres <span>\\(S^{n}\\)</span>, etc.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"60 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dichotomy for Hörmander-type oscillatory integral operators\",\"authors\":\"Shaoming Guo, Hong Wang, Ruixiang Zhang\",\"doi\":\"10.1007/s00222-024-01288-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we first generalize the work of Bourgain (Geom. Funct. Anal. 1(4):321–374, 1991) and state a curvature condition for Hörmander-type oscillatory integral operators, which we call Bourgain’s condition. This condition is notably satisfied by the phase functions for the Fourier restriction problem and the Bochner-Riesz problem. We conjecture that for Hörmander-type oscillatory integral operators satisfying Bourgain’s condition, they satisfy the same <span>\\\\(L^{p}\\\\)</span> bounds as in the Fourier Restriction Conjecture. To support our conjecture, we show that whenever Bourgain’s condition fails, then the <span>\\\\(L^{\\\\infty } \\\\to L^{q}\\\\)</span> boundedness always fails for some <span>\\\\(q= q(n) &gt; \\\\frac{2n}{n-1}\\\\)</span>, extending Bourgain’s three-dimensional result (Geom. Funct. Anal. 1(4):321–374, 1991). On the other hand, if Bourgain’s condition holds, then we prove <span>\\\\(L^{p}\\\\)</span> bounds for Hörmander-type oscillatory integral operators for a range of <span>\\\\(p\\\\)</span> that extends the currently best-known range for the Fourier restriction conjecture in high dimensions, given by Hickman and Zahl (A note on Fourier restriction and nested polynomial wolff axioms, 2020, arXiv:2010.02251). This gives new progress on the Fourier restriction problem, the Bochner-Riesz problem on <span>\\\\(\\\\mathbb{R}^{n}\\\\)</span>, the Bochner-Riesz problem on spheres <span>\\\\(S^{n}\\\\)</span>, etc.</p>\",\"PeriodicalId\":14429,\"journal\":{\"name\":\"Inventiones mathematicae\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventiones mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-024-01288-8\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01288-8","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先概括了布尔甘的研究成果(Geom.Funct.Anal.1(4):321-374,1991)的研究成果,并提出了霍曼德型振荡积分算子的曲率条件,我们称之为布尔干条件。傅里叶限制问题和波赫纳-里兹问题的相位函数明显满足这一条件。我们猜想,对于满足布尔干条件的霍曼德型振荡积分算子,它们满足与傅里叶限制猜想中相同的 \(L^{p}\) 约束。为了支持我们的猜想,我们证明了只要布尔干的条件失效,那么对于某个 \(q= q(n) > \frac{2n}{n-1}\) 来说,\(L^{\infty }\to L^{q}\) 约束总是失效的,从而扩展了布尔干的三维结果(Geom.Funct.Anal.1(4):321-374, 1991).另一方面,如果布尔甘的条件成立,那么我们证明了霍曼德型振荡积分算子的 \(L^{p}\) 约束,其 \(p\) 范围扩展了希克曼和扎尔给出的高维傅立叶限制猜想的当前最著名范围(傅立叶限制和嵌套多项式沃尔夫公理注释,2020 年,arXiv:2010.02251)。这为傅里叶限制问题、\(\mathbb{R}^{n}\)上的波赫纳-里兹问题、球面\(S^{n}\)上的波赫纳-里兹问题等提供了新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dichotomy for Hörmander-type oscillatory integral operators

In this paper, we first generalize the work of Bourgain (Geom. Funct. Anal. 1(4):321–374, 1991) and state a curvature condition for Hörmander-type oscillatory integral operators, which we call Bourgain’s condition. This condition is notably satisfied by the phase functions for the Fourier restriction problem and the Bochner-Riesz problem. We conjecture that for Hörmander-type oscillatory integral operators satisfying Bourgain’s condition, they satisfy the same \(L^{p}\) bounds as in the Fourier Restriction Conjecture. To support our conjecture, we show that whenever Bourgain’s condition fails, then the \(L^{\infty } \to L^{q}\) boundedness always fails for some \(q= q(n) > \frac{2n}{n-1}\), extending Bourgain’s three-dimensional result (Geom. Funct. Anal. 1(4):321–374, 1991). On the other hand, if Bourgain’s condition holds, then we prove \(L^{p}\) bounds for Hörmander-type oscillatory integral operators for a range of \(p\) that extends the currently best-known range for the Fourier restriction conjecture in high dimensions, given by Hickman and Zahl (A note on Fourier restriction and nested polynomial wolff axioms, 2020, arXiv:2010.02251). This gives new progress on the Fourier restriction problem, the Bochner-Riesz problem on \(\mathbb{R}^{n}\), the Bochner-Riesz problem on spheres \(S^{n}\), etc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信