Yijun Li;Jiawei Huang;Zhaoyi Li;Jingling Liu;Shengwen Zhou;Tao Zhang;Wanchun Jiang;Jianxin Wang
{"title":"面向大规模分布式深度学习系统的 \"意识到落伍者 \"梯度聚合技术","authors":"Yijun Li;Jiawei Huang;Zhaoyi Li;Jingling Liu;Shengwen Zhou;Tao Zhang;Wanchun Jiang;Jianxin Wang","doi":"10.1109/TNET.2024.3441039","DOIUrl":null,"url":null,"abstract":"Deep Neural Network (DNN) is a critical component of a wide range of applications. However, with the rapid growth of the training dataset and model size, communication becomes the bottleneck, resulting in low utilization of computing resources. To accelerate communication, recent works propose to aggregate gradients from multiple workers in the programmable switch to reduce the volume of exchanged data. Unfortunately, since using synchronization transmission to aggregate data, current in-network aggregation designs suffer from the straggler problem, which often occurs in shared clusters due to resource contention. To address this issue, we propose a straggler-aware aggregation transport protocol (SA-ATP), which enables the leading worker to leverage the spare computing and storage resources to help the straggling worker. We implement SA-ATP atop clusters using P4-programmable switches. The evaluation results show that SA-ATP reduces the iteration time by up to 57% and accelerates training by up to \n<inline-formula> <tex-math>$1.8\\times $ </tex-math></inline-formula>\n in real-world benchmark models.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"4917-4930"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Straggler-Aware Gradient Aggregation for Large-Scale Distributed Deep Learning System\",\"authors\":\"Yijun Li;Jiawei Huang;Zhaoyi Li;Jingling Liu;Shengwen Zhou;Tao Zhang;Wanchun Jiang;Jianxin Wang\",\"doi\":\"10.1109/TNET.2024.3441039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Neural Network (DNN) is a critical component of a wide range of applications. However, with the rapid growth of the training dataset and model size, communication becomes the bottleneck, resulting in low utilization of computing resources. To accelerate communication, recent works propose to aggregate gradients from multiple workers in the programmable switch to reduce the volume of exchanged data. Unfortunately, since using synchronization transmission to aggregate data, current in-network aggregation designs suffer from the straggler problem, which often occurs in shared clusters due to resource contention. To address this issue, we propose a straggler-aware aggregation transport protocol (SA-ATP), which enables the leading worker to leverage the spare computing and storage resources to help the straggling worker. We implement SA-ATP atop clusters using P4-programmable switches. The evaluation results show that SA-ATP reduces the iteration time by up to 57% and accelerates training by up to \\n<inline-formula> <tex-math>$1.8\\\\times $ </tex-math></inline-formula>\\n in real-world benchmark models.\",\"PeriodicalId\":13443,\"journal\":{\"name\":\"IEEE/ACM Transactions on Networking\",\"volume\":\"32 6\",\"pages\":\"4917-4930\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10638484/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10638484/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Straggler-Aware Gradient Aggregation for Large-Scale Distributed Deep Learning System
Deep Neural Network (DNN) is a critical component of a wide range of applications. However, with the rapid growth of the training dataset and model size, communication becomes the bottleneck, resulting in low utilization of computing resources. To accelerate communication, recent works propose to aggregate gradients from multiple workers in the programmable switch to reduce the volume of exchanged data. Unfortunately, since using synchronization transmission to aggregate data, current in-network aggregation designs suffer from the straggler problem, which often occurs in shared clusters due to resource contention. To address this issue, we propose a straggler-aware aggregation transport protocol (SA-ATP), which enables the leading worker to leverage the spare computing and storage resources to help the straggling worker. We implement SA-ATP atop clusters using P4-programmable switches. The evaluation results show that SA-ATP reduces the iteration time by up to 57% and accelerates training by up to
$1.8\times $
in real-world benchmark models.
期刊介绍:
The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.