{"title":"借款约束下退休决策的双人零和博弈法","authors":"Junkee Jeon, Hyeng Keun Koo, Minsuk Kwak","doi":"10.1137/22m1528124","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Financial Mathematics, Volume 15, Issue 3, Page 883-930, September 2024. <br/> Abstract. We study an optimal consumption, investment, and retirement decision of an economic agent with borrowing constraints under a general class of utility functions. We transform the problem into a dual two-person zero-sum game, which involves two players: a stopper who is a maximizer and chooses a stopping time and a controller who is a minimizer and chooses a nonincreasing process. We derive the Hamilton–Jacobi–Bellman quasi-variational inequality (HJBQVI) of a max-min type from the dual two-person zero-sum game. We provide a solution to the HJBQVI and verify that the solution to the HJBQVI is the value of the dual two-person zero-sum game. We establish the duality result which allows us to derive the optimal strategies and value function of the primal problem from those of the dual problem. We provide examples for a class of utility functions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Person Zero-Sum Game Approach for a Retirement Decision with Borrowing Constraints\",\"authors\":\"Junkee Jeon, Hyeng Keun Koo, Minsuk Kwak\",\"doi\":\"10.1137/22m1528124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Financial Mathematics, Volume 15, Issue 3, Page 883-930, September 2024. <br/> Abstract. We study an optimal consumption, investment, and retirement decision of an economic agent with borrowing constraints under a general class of utility functions. We transform the problem into a dual two-person zero-sum game, which involves two players: a stopper who is a maximizer and chooses a stopping time and a controller who is a minimizer and chooses a nonincreasing process. We derive the Hamilton–Jacobi–Bellman quasi-variational inequality (HJBQVI) of a max-min type from the dual two-person zero-sum game. We provide a solution to the HJBQVI and verify that the solution to the HJBQVI is the value of the dual two-person zero-sum game. We establish the duality result which allows us to derive the optimal strategies and value function of the primal problem from those of the dual problem. We provide examples for a class of utility functions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1528124\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1137/22m1528124","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Two-Person Zero-Sum Game Approach for a Retirement Decision with Borrowing Constraints
SIAM Journal on Financial Mathematics, Volume 15, Issue 3, Page 883-930, September 2024. Abstract. We study an optimal consumption, investment, and retirement decision of an economic agent with borrowing constraints under a general class of utility functions. We transform the problem into a dual two-person zero-sum game, which involves two players: a stopper who is a maximizer and chooses a stopping time and a controller who is a minimizer and chooses a nonincreasing process. We derive the Hamilton–Jacobi–Bellman quasi-variational inequality (HJBQVI) of a max-min type from the dual two-person zero-sum game. We provide a solution to the HJBQVI and verify that the solution to the HJBQVI is the value of the dual two-person zero-sum game. We establish the duality result which allows us to derive the optimal strategies and value function of the primal problem from those of the dual problem. We provide examples for a class of utility functions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.