深度校准(粗糙)随机波动率模型的近似率

IF 1.4 4区 经济学 Q3 BUSINESS, FINANCE
Francesca Biagini, Lukas Gonon, Niklas Walter
{"title":"深度校准(粗糙)随机波动率模型的近似率","authors":"Francesca Biagini, Lukas Gonon, Niklas Walter","doi":"10.1137/23m1606769","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Financial Mathematics, Volume 15, Issue 3, Page 734-784, September 2024. <br/> Abstract.We derive quantitative error bounds for deep neural networks (DNNs) approximating option prices on a [math]-dimensional risky asset as functions of the underlying model parameters, payoff parameters, and initial conditions. We cover a general class of stochastic volatility models of Markovian nature as well as the rough Bergomi model. In particular, under suitable assumptions we show that option prices can be learned by DNNs up to an arbitrary small error [math] while the network size grows only subpolynomially in the asset vector dimension [math] and the reciprocal [math] of the accuracy. Hence, the approximation does not suffer from the curse of dimensionality. As quantitative approximation results for DNNs applicable in our setting are formulated for functions on compact domains, we first consider the case of the asset price restricted to a compact set, and then we extend these results to the general case by using convergence arguments for the option prices.","PeriodicalId":48880,"journal":{"name":"SIAM Journal on Financial Mathematics","volume":"22 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation Rates for Deep Calibration of (Rough) Stochastic Volatility Models\",\"authors\":\"Francesca Biagini, Lukas Gonon, Niklas Walter\",\"doi\":\"10.1137/23m1606769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Financial Mathematics, Volume 15, Issue 3, Page 734-784, September 2024. <br/> Abstract.We derive quantitative error bounds for deep neural networks (DNNs) approximating option prices on a [math]-dimensional risky asset as functions of the underlying model parameters, payoff parameters, and initial conditions. We cover a general class of stochastic volatility models of Markovian nature as well as the rough Bergomi model. In particular, under suitable assumptions we show that option prices can be learned by DNNs up to an arbitrary small error [math] while the network size grows only subpolynomially in the asset vector dimension [math] and the reciprocal [math] of the accuracy. Hence, the approximation does not suffer from the curse of dimensionality. As quantitative approximation results for DNNs applicable in our setting are formulated for functions on compact domains, we first consider the case of the asset price restricted to a compact set, and then we extend these results to the general case by using convergence arguments for the option prices.\",\"PeriodicalId\":48880,\"journal\":{\"name\":\"SIAM Journal on Financial Mathematics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Financial Mathematics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1606769\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Financial Mathematics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1137/23m1606769","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 金融数学期刊》,第 15 卷,第 3 期,第 734-784 页,2024 年 9 月。 摘要:我们推导了深度神经网络(DNN)近似[数学]维风险资产期权价格的定量误差边界,它是基础模型参数、报酬参数和初始条件的函数。我们的研究涵盖了马尔可夫性质的一般随机波动率模型以及粗糙的 Bergomi 模型。特别是,在合适的假设条件下,我们证明了 DNN 可以学习到任意小误差[数学]的期权价格,而网络规模的增长仅与资产向量维度[数学]和精度倒数[数学]成亚对数关系。因此,这种近似方法不会受到维度诅咒的影响。由于适用于我们设置的 DNN 的定量近似结果是针对紧凑域上的函数提出的,因此我们首先考虑了资产价格被限制在紧凑集合上的情况,然后通过使用期权价格的收敛论证将这些结果扩展到一般情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation Rates for Deep Calibration of (Rough) Stochastic Volatility Models
SIAM Journal on Financial Mathematics, Volume 15, Issue 3, Page 734-784, September 2024.
Abstract.We derive quantitative error bounds for deep neural networks (DNNs) approximating option prices on a [math]-dimensional risky asset as functions of the underlying model parameters, payoff parameters, and initial conditions. We cover a general class of stochastic volatility models of Markovian nature as well as the rough Bergomi model. In particular, under suitable assumptions we show that option prices can be learned by DNNs up to an arbitrary small error [math] while the network size grows only subpolynomially in the asset vector dimension [math] and the reciprocal [math] of the accuracy. Hence, the approximation does not suffer from the curse of dimensionality. As quantitative approximation results for DNNs applicable in our setting are formulated for functions on compact domains, we first consider the case of the asset price restricted to a compact set, and then we extend these results to the general case by using convergence arguments for the option prices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Financial Mathematics
SIAM Journal on Financial Mathematics MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.30
自引率
10.00%
发文量
52
期刊介绍: SIAM Journal on Financial Mathematics (SIFIN) addresses theoretical developments in financial mathematics as well as breakthroughs in the computational challenges they encompass. The journal provides a common platform for scholars interested in the mathematical theory of finance as well as practitioners interested in rigorous treatments of the scientific computational issues related to implementation. On the theoretical side, the journal publishes articles with demonstrable mathematical developments motivated by models of modern finance. On the computational side, it publishes articles introducing new methods and algorithms representing significant (as opposed to incremental) improvements on the existing state of affairs of modern numerical implementations of applied financial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信