Martina Sobotková, Alexandr Žák, Michal Beneš, Michal Sněhota
{"title":"全饱和砂中水冻结和解冻的实验和数值研究","authors":"Martina Sobotková, Alexandr Žák, Michal Beneš, Michal Sněhota","doi":"10.2478/johh-2024-0018","DOIUrl":null,"url":null,"abstract":"This paper presents an experimental and numerical study of the freezing-thawing behavior of water in fully saturated sand. A relatively inexpensive and easily replicable experimental procedure was developed to simulate the freezing-thawing cycles in a medium-sized sand sample placed in a modified commercial freezer. By insulating the sides and bottom of the sample well, while allowing good thermal conductivity at the top of the sample, a nearly vertical advance of the freezing and thawing front was achieved. A series of freeze-thaw cycles were performed with higher and lower temperature gradients. A numerical multiphysics model, assuming an axially symmetric geometry based on the transient heat transfer during the phase transition, used a parametric approach to estimate the effective thermal properties of the sand-water-ice system. A good agreement between experimental and modelling results was shown, but slightly different parameter sets were obtained for each temperature gradient. The presented method could be a simple way to characterize the freeze-thaw process in natural and artificial porous materials.","PeriodicalId":50183,"journal":{"name":"Journal Of Hydrology And Hydromechanics","volume":"13 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical investigation of water freezing and thawing in fully saturated sand\",\"authors\":\"Martina Sobotková, Alexandr Žák, Michal Beneš, Michal Sněhota\",\"doi\":\"10.2478/johh-2024-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an experimental and numerical study of the freezing-thawing behavior of water in fully saturated sand. A relatively inexpensive and easily replicable experimental procedure was developed to simulate the freezing-thawing cycles in a medium-sized sand sample placed in a modified commercial freezer. By insulating the sides and bottom of the sample well, while allowing good thermal conductivity at the top of the sample, a nearly vertical advance of the freezing and thawing front was achieved. A series of freeze-thaw cycles were performed with higher and lower temperature gradients. A numerical multiphysics model, assuming an axially symmetric geometry based on the transient heat transfer during the phase transition, used a parametric approach to estimate the effective thermal properties of the sand-water-ice system. A good agreement between experimental and modelling results was shown, but slightly different parameter sets were obtained for each temperature gradient. The presented method could be a simple way to characterize the freeze-thaw process in natural and artificial porous materials.\",\"PeriodicalId\":50183,\"journal\":{\"name\":\"Journal Of Hydrology And Hydromechanics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal Of Hydrology And Hydromechanics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2478/johh-2024-0018\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal Of Hydrology And Hydromechanics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2478/johh-2024-0018","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Experimental and numerical investigation of water freezing and thawing in fully saturated sand
This paper presents an experimental and numerical study of the freezing-thawing behavior of water in fully saturated sand. A relatively inexpensive and easily replicable experimental procedure was developed to simulate the freezing-thawing cycles in a medium-sized sand sample placed in a modified commercial freezer. By insulating the sides and bottom of the sample well, while allowing good thermal conductivity at the top of the sample, a nearly vertical advance of the freezing and thawing front was achieved. A series of freeze-thaw cycles were performed with higher and lower temperature gradients. A numerical multiphysics model, assuming an axially symmetric geometry based on the transient heat transfer during the phase transition, used a parametric approach to estimate the effective thermal properties of the sand-water-ice system. A good agreement between experimental and modelling results was shown, but slightly different parameter sets were obtained for each temperature gradient. The presented method could be a simple way to characterize the freeze-thaw process in natural and artificial porous materials.
期刊介绍:
JOURNAL OF HYDROLOGY AND HYDROMECHANICS is an international open access journal for the basic disciplines of water sciences. The scope of hydrology is limited to biohydrology, catchment hydrology and vadose zone hydrology, primarily of temperate zone. The hydromechanics covers theoretical, experimental and computational hydraulics and fluid mechanics in various fields, two- and multiphase flows, including non-Newtonian flow, and new frontiers in hydraulics. The journal is published quarterly in English. The types of contribution include: research and review articles, short communications and technical notes. The articles have been thoroughly peer reviewed by international specialists and promoted to researchers working in the same field.