对流主导椭圆算子流线扩散有限元下的超线性克雷洛夫收敛

IF 1.8 3区 数学 Q1 MATHEMATICS
János Karátson
{"title":"对流主导椭圆算子流线扩散有限元下的超线性克雷洛夫收敛","authors":"János Karátson","doi":"10.1002/nla.2586","DOIUrl":null,"url":null,"abstract":"This paper studies the superlinear convergence of Krylov iterations under the streamline‐diffusion preconditioning operator for convection‐dominated elliptic problems. First, convergence results are given involving the diffusion parameter . Then the limiting case is studied on the operator level, and the convergence results are extended to this situation under some conditions, in spite of the lack of compactness of the perturbation operators. An explicit rate is also given.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":"10 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superlinear Krylov convergence under streamline diffusion FEM for convection‐dominated elliptic operators\",\"authors\":\"János Karátson\",\"doi\":\"10.1002/nla.2586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the superlinear convergence of Krylov iterations under the streamline‐diffusion preconditioning operator for convection‐dominated elliptic problems. First, convergence results are given involving the diffusion parameter . Then the limiting case is studied on the operator level, and the convergence results are extended to this situation under some conditions, in spite of the lack of compactness of the perturbation operators. An explicit rate is also given.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2586\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2586","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了对流主导椭圆问题的流线-扩散预处理算子下 Krylov 迭代的超线性收敛性。首先,给出了涉及扩散参数 .然后,在算子层面研究了极限情况,并在某些条件下将收敛结果扩展到这种情况,尽管扰动算子缺乏紧凑性。此外,还给出了显式速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superlinear Krylov convergence under streamline diffusion FEM for convection‐dominated elliptic operators
This paper studies the superlinear convergence of Krylov iterations under the streamline‐diffusion preconditioning operator for convection‐dominated elliptic problems. First, convergence results are given involving the diffusion parameter . Then the limiting case is studied on the operator level, and the convergence results are extended to this situation under some conditions, in spite of the lack of compactness of the perturbation operators. An explicit rate is also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信