Jinbao Jian, Qiongxuan Huang, Jianghua Yin, Guodong Ma
{"title":"具有凸约束条件的大规模非线性伪单调方程的惯性三期 CGPM 族","authors":"Jinbao Jian, Qiongxuan Huang, Jianghua Yin, Guodong Ma","doi":"10.1002/nla.2589","DOIUrl":null,"url":null,"abstract":"This article presents and analyzes a family of three‐term conjugate gradient projection methods with the inertial technique for solving large‐scale nonlinear pseudo‐monotone equations with convex constraints. The generated search direction exhibits good properties independent of line searches. The global convergence of the family is proved without the Lipschitz continuity of the underlying mapping. Furthermore, under the locally Lipschitz continuity assumption, we conduct a thorough analysis related to the asymptotic and non‐asymptotic global convergence rates in terms of iteration complexity. To our knowledge, this is the first iteration‐complexity analysis for inertial gradient‐type projection methods, in the literature, under such a assumption. Numerical experiments demonstrate the computational efficiency of the family, showing its superiority over three existing inertial methods. Finally, we apply the proposed family to solve practical problems such as ‐regularized logistic regression, sparse signal restoration and image restoration problems, highlighting its effectiveness and potential for real‐world applications.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":"10 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Family of Inertial Three‐Term CGPMs for Large‐Scale Nonlinear Pseudo‐Monotone Equations With Convex Constraints\",\"authors\":\"Jinbao Jian, Qiongxuan Huang, Jianghua Yin, Guodong Ma\",\"doi\":\"10.1002/nla.2589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents and analyzes a family of three‐term conjugate gradient projection methods with the inertial technique for solving large‐scale nonlinear pseudo‐monotone equations with convex constraints. The generated search direction exhibits good properties independent of line searches. The global convergence of the family is proved without the Lipschitz continuity of the underlying mapping. Furthermore, under the locally Lipschitz continuity assumption, we conduct a thorough analysis related to the asymptotic and non‐asymptotic global convergence rates in terms of iteration complexity. To our knowledge, this is the first iteration‐complexity analysis for inertial gradient‐type projection methods, in the literature, under such a assumption. Numerical experiments demonstrate the computational efficiency of the family, showing its superiority over three existing inertial methods. Finally, we apply the proposed family to solve practical problems such as ‐regularized logistic regression, sparse signal restoration and image restoration problems, highlighting its effectiveness and potential for real‐world applications.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2589\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2589","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Family of Inertial Three‐Term CGPMs for Large‐Scale Nonlinear Pseudo‐Monotone Equations With Convex Constraints
This article presents and analyzes a family of three‐term conjugate gradient projection methods with the inertial technique for solving large‐scale nonlinear pseudo‐monotone equations with convex constraints. The generated search direction exhibits good properties independent of line searches. The global convergence of the family is proved without the Lipschitz continuity of the underlying mapping. Furthermore, under the locally Lipschitz continuity assumption, we conduct a thorough analysis related to the asymptotic and non‐asymptotic global convergence rates in terms of iteration complexity. To our knowledge, this is the first iteration‐complexity analysis for inertial gradient‐type projection methods, in the literature, under such a assumption. Numerical experiments demonstrate the computational efficiency of the family, showing its superiority over three existing inertial methods. Finally, we apply the proposed family to solve practical problems such as ‐regularized logistic regression, sparse signal restoration and image restoration problems, highlighting its effectiveness and potential for real‐world applications.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.